1
|
Imchen T, Tilvi S, Singh KS, Thakur N. Allelochemicals from the seaweeds and their bioprospecting potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5387-5401. [PMID: 38396154 DOI: 10.1007/s00210-024-03002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Allelochemicals are secondary metabolites which function as a natural protection against grazing activities by algae and higher plants. They are one of the major metabolites engaged in the interactions of organisms. The chemically mediated interactions between organisms significantly influence the functioning of the ecosystems. Most of these compounds are secondary metabolites comprising sterols, terpenes, and polyphenols. These compounds not only play a defensive role, but also exhibit biological activities such as antioxidants, anti-cancer, anti-diabetes, anti-inflammation, and anti-microbial properties. This review article discusses the current understanding of the allelochemicals of seaweeds and their bioprospecting potential that can bring benefit to humanity. Specifically, the bioactive substances having specific health benefits associated with the consumption or application of seaweed-derived compounds. The properties of such allelochemicals can have implications for bioprospecting pharmaceutical, nutraceutical and cosmetic applications.
Collapse
Affiliation(s)
- Temjensangba Imchen
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Keisham Sarjit Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Narsinh Thakur
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| |
Collapse
|
2
|
Lee YH, Kim HR, Yeo MH, Kim SC, Hyun HB, Ham YM, Jung YH, Kim HS, Chang KS. Anti-Diabetic Potential of Sargassum horneri and Ulva australis Extracts In Vitro and In Vivo. Curr Issues Mol Biol 2023; 45:7492-7512. [PMID: 37754257 PMCID: PMC10530218 DOI: 10.3390/cimb45090473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Sargassum horneri (SH) and Ulva australis (UA) are marine waste resources that cause environmental and economic problems when entering or multiplying the coastal waters of Jeju Island. We analyzed their anti-diabetic efficacy to assess their reusability as functional additives. The alpha-glucosidase inhibitory activity of SH and UA extracts was confirmed, and the effect of UA extract was higher than that of SH. After the induction of insulin-resistant HepG2 cells, the effects of the two marine extracts on oxidative stress, intracellular glucose uptake, and glycogen content were compared to the positive control, metformin. Treatment of insulin-resistant HepG2 cells with SH and UA resulted in a concentration-dependent decrease in oxidative stress and increased intracellular glucose uptake and glycogen content. Moreover, SH and UA treatment upregulated the expression of IRS-1, AKT, and GLUT4, which are suppressed in insulin resistance, to a similar degree to metformin, and suppressed the expression of FoxO1, PEPCK involved in gluconeogenesis, and GSK-3β involved in glycogen metabolism. The oral administration of these extracts to rats with streptozotocin-induced diabetes led to a higher weight gain than that in the diabetic group. Insulin resistance and oral glucose tolerance are alleviated by the regulation of blood glucose. Thus, the SH and UA extracts may be used in the development of therapeutic agents or supplements to improve insulin resistance.
Collapse
Affiliation(s)
- Young-Hyeon Lee
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Republic of Korea; (Y.-H.L.); (M.-H.Y.)
| | - Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan 47230, Republic of Korea;
| | - Min-Ho Yeo
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Republic of Korea; (Y.-H.L.); (M.-H.Y.)
| | - Sung-Chun Kim
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea; (S.-C.K.); (H.-B.H.); (Y.-M.H.); (Y.-H.J.)
| | - Ho-Bong Hyun
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea; (S.-C.K.); (H.-B.H.); (Y.-M.H.); (Y.-H.J.)
| | - Young-Min Ham
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea; (S.-C.K.); (H.-B.H.); (Y.-M.H.); (Y.-H.J.)
| | - Yong-Hwan Jung
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea; (S.-C.K.); (H.-B.H.); (Y.-M.H.); (Y.-H.J.)
| | - Hye-Sook Kim
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan;
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Republic of Korea; (Y.-H.L.); (M.-H.Y.)
| |
Collapse
|
3
|
Yang MH, Ha IJ, Ahn J, Kim CK, Lee M, Ahn KS. Potential function of loliolide as a novel blocker of epithelial-mesenchymal transition in colorectal and breast cancer cells. Cell Signal 2023; 105:110610. [PMID: 36707041 DOI: 10.1016/j.cellsig.2023.110610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Loliolide (LL), a naturally occurring monoterpenoid lactone isolated from Vicia tenuifolia Roth, can exhibit numerous pharmacological effects such as those related to anti-Parkinson, anti-oxidant, anti-cholinesterase, and anti-depressant. Epithelial-mesenchymal transition (EMT) plays a pivotal role in regulating tumor metastasis. CXCR4 and CXCR7 are G-protein-coupled receptors (GPRs), which can be stimulated by CXCL12. CXCL12/CXCR4/CXCXR7 axis can cause activation of multiple pathways including MAPKs, JAK/STAT pathway, and manganese superoxide dismutase (MnSOD) signaling. These events can initiate EMT process and induce cell invasion and migration. Here, we investigated whether LL can modulate the CXCR4 and CXCR7 and EMT process in colon cancer and breast cancer cells. We found that LL suppressed levels of CXCR4 and CXCR7, and exerted an inhibitory effect on these chemokines even after stimulation by CXCL12. LL suppressed expression of MnSOD and mesenchymal markers, whereas induced epithelial markers. In addition, LL significantly attenuated cellular invasion, migration, and metastasis. We noted that LL inhibited CXCR4/7 and EMT process even after stimulation of CXCL12 and MnSOD overexpression. Therefore, in this study, we provide evidences that targeting CXCR4/7 and MnSOD could inhibit the invasion, migration, and metastasis of cancer cells as well as negatively regulate the EMT process. Overall, our study suggested that LL might act as a potent suppressor of EMT process against colon and breast cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeongjun Ahn
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Chang-Kwon Kim
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Singh KD, Koijam AS, Bharali R, Rajashekar Y. Insecticidal and biochemical effects of Dillenia indica L. leaves against three major stored grain insect pests. FRONTIERS IN PLANT SCIENCE 2023; 14:1135946. [PMID: 36890902 PMCID: PMC9986431 DOI: 10.3389/fpls.2023.1135946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The Last four decades have witnessed the banning of several synthetic insecticides mainly due to the development of resistance to the target pests and due to hazardous effects on humans and the environment. Hence, the development of a potent insecticide with biodegradable and eco-friendly nature is the need of the hour. In the present study, the fumigant property, and biochemical effects of Dillenia indica L. (Dilleniaceae) were studied against three coleopterans stored-products insects. The bioactive enriched fraction (sub-fraction-III) was isolated from ethyl acetate extracts of D. indica leaves and found toxic to rice weevil, Sitophilus oryzae (L.) (Coleoptera); lesser grain borer Rhyzopertha dominica (L.) (Coleoptera) and red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera) with the LC50 values of 101.887, 189.908 and 115.1 µg/L respectively after 24 h exposure. The enriched fraction was found to inhibit the function of acetylcholinesterase (AChE) enzyme when tested against S. oryzae, T. castaneum, and R. dominica with LC50 value of 88.57 µg/ml, 97.07 µg/ml, and 66.31 µg/ml respectively, in in-vitro condition. It was also found that the enriched fraction caused a significant oxidative imbalance in the antioxidative enzyme system such as superoxide dismutase, catalase, DPPH (2,2-diphenyl-1-picrylhydrazyl), and glutathione-S-transferase (GST). GCMS analysis of the enriched fraction indicates three major compounds namely, 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one, 1,2-Benzisothiazol-3(2H)-one, and Benzothiazole, 2-(2-hydroxyethylthio)-. Finally, we concluded that the enriched fraction of D. indica has insecticidal properties and the toxicity may be due to the inhibition of the AChE enzyme in association with oxidative imbalance created on the insect's antioxidant enzyme systems.
Collapse
Affiliation(s)
- Kabrambam D. Singh
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Arunkumar S. Koijam
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Rupjyoti Bharali
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| |
Collapse
|
6
|
Kirindage KGIS, Jayasinghe AMK, Cho N, Cho SH, Yoo HM, Fernando IPS, Ahn G. Fine-Dust-Induced Skin Inflammation: Low-Molecular-Weight Fucoidan Protects Keratinocytes and Underlying Fibroblasts in an Integrated Culture Model. Mar Drugs 2022; 21:md21010012. [PMID: 36662185 PMCID: PMC9860993 DOI: 10.3390/md21010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Prolonged exposure to fine dust (FD) increases the risk of skin inflammation. Stimulated epidermal cells release growth factors into their extracellular environment, which can induce inflammation in dermal cells. Algae are considered rich sources of bioactive materials. The present study emphasized the effect of low-molecular-weight fucoidan isolated from Sargassum confusum (LMF) against FD-induced inflammation in HaCaT keratinocytes and underneath fibroblasts (HDFs) in an integrated culture model. HDFs were treated with media from FD-stimulated HaCaT with LMF treatments (preconditioned media). The results suggested that FD increased the oxidative stress in HaCaT, thereby increasing the sub-G1 phase of the cell cycle up to 587%, as revealed via flow cytometric analysis. With preconditioned media, HDFs also displayed oxidative stress; however, the increase in the sub-G1 phase was insignificant compared with HaCaT. LMF dose-dependently regulated the NF-κB/MAPK signaling in HaCaT. Furthermore, significant downregulation in NF-κB/MAPK signaling, as well as inflammatory cytokines, tissue inhibitors of metalloproteinases, matrix metalloproteinases, and reduction in relative elastase and collagenase activities related to the extracellular matrix degeneration were observed in HDFs with a preconditioned media treatment. Therefore, we concluded that HDFs were protected from inflammation by preconditioned media. Continued research on tissue culture and in vivo studies may reveal the therapeutic potential of LMF.
Collapse
Affiliation(s)
| | | | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seok Ho Cho
- Department of Clothing and Textiles, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Min Yoo
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | | | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
8
|
Anti-pathogenic, anti-diabetic, anti-inflammatory, antioxidant, and wound healing efficacy of Datura metel L. leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Vladić J, Jerković I, Radman S, Molnar Jazić J, Ferreira A, Maletić S, Gouveia L. Supercritical CO 2 Extract from Microalga Tetradesmus obliquus: The Effect of High-Pressure Pre-Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123883. [PMID: 35745004 PMCID: PMC9231020 DOI: 10.3390/molecules27123883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
High-pressure pre-treatment followed by supercritical carbon dioxide (ScCO2) extraction (300 bar, 40 °C) was applied for the attainment of the lipophilic fraction of microalga Tetradesmus obliquus. The chemical profile of supercritical extracts of T. obliquus was analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). Moreover, the impact of ScCO2 on the microbiological and metal profile of the biomass was monitored. The application of the pre-treatment increased the extraction yield approximately three-fold compared to the control. In the obtained extracts (control and pre-treated extracts), the identified components belonged to triacylglyceroles, fatty acid derivatives, diacylglycerophosphocholines and diacylglycerophosphoserines, pigments, terpenes, and steroids. Triacylglycerols (65%) were the most dominant group of compounds in the control extract. The pre-treatment decreased the percentage of triacylglycerols to 2%, while the abundance of fatty acid derivatives was significantly increased (82%). In addition, the pre-treatment led to an increase in the percentages of carotenoids, terpenoids, and steroids. Furthermore, it was determined that ScCO2 extraction reduced the number of microorganisms in the biomass. Considering its microbiological and metal profiles, the biomass after ScCO2 can potentially be used as a safe and important source of organic compounds.
Collapse
Affiliation(s)
- Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; or
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
- Correspondence: (I.J.); (L.G.)
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Jelena Molnar Jazić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (J.M.J.); (S.M.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Paço Lumiar 22, 1649-038 Lisbon, Portugal;
| | - Snežana Maletić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (J.M.J.); (S.M.)
| | - Luisa Gouveia
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Paço Lumiar 22, 1649-038 Lisbon, Portugal;
- GreenCoLab—Green Ocean Technologies and Products Collaborative Laboratory, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus Gambelas, Edifício 7, 8005-139 Faro, Portugal
- Correspondence: (I.J.); (L.G.)
| |
Collapse
|
10
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Lee DH, Woo JK, Heo W, Huang WY, Kim Y, Chung S, Lee GH, Park JW, Han BK, Shin EC, Pan JH, Kim JK, Kim YJ. Citrus junos Tanaka Peel Extract and Its Bioactive Naringin Reduce Fine Dust-Induced Respiratory Injury Markers in BALB/c Male Mice. Nutrients 2022; 14:1101. [PMID: 35268078 PMCID: PMC8912745 DOI: 10.3390/nu14051101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Particulate matter (PM) 10 refers to fine dust with a diameter of less than 10 µm and induces apoptosis and inflammatory responses through oxidative stress. Citrus junos Tanaka is a citrus fruit and contains bioactive flavonoids including naringin. In the present study, we aimed to identify the preventive effect of Citrus junos Tanaka peel extract (CPE) against PM10-induced lung injury. As a proof of concept, NCI-H460 cells were treated with CPE (800 μg/mL, 12 h) in conjunction with PM10 to examine intracellular antioxidative capacity in the pulmonary system. In an in vivo model, male BALB/c mice (n = 8/group) were randomly assigned into five groups: NEG (saline-treated), POS (PM10 only), NAR (PM10 + naringin, 100 mg/kg), CPL (PM10 + CPE low, 100 mg/kg), and CPH (PM10 + CPE high, 400 mg/kg). Intervention groups received dietary supplementations for 7 days followed by PM10 exposure (100 mg/kg, intranasal instillation). Compared to the NEG, the CPE decreased to 22% of the ROS generation and significantly increased cell viability in vitro. The histological assessments confirmed that pulmonary damages were alleviated in the PM10 + CPL group compared to the POS. Pro-inflammatory cytokines and NF-κB/apoptosis signaling-related markers were decreased in the PM10 + CPL group compared to the POS. These results indicated that CPE showed promising efficacy in preventing pulmonary injuries in vivo. Such protection can be explained by the anti-oxidative capacity of CPE, likely due to its bioactives, including naringin (7.74 mg/g CPE). Follow-up human intervention, as well as population-level studies, will further shed light on the preventive efficacy of CPE against pulmonary damage in humans.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (D.-H.L.); (J.-K.W.); (W.-Y.H.); (B.-K.H.)
| | - Jin-Kyung Woo
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (D.-H.L.); (J.-K.W.); (W.-Y.H.); (B.-K.H.)
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju 28647, Korea;
| | - Wen-Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (D.-H.L.); (J.-K.W.); (W.-Y.H.); (B.-K.H.)
| | - Yunsik Kim
- Lotte R&D Center, Seoul 07594, Korea; (Y.K.); (S.C.); (G.-H.L.); (J.-W.P.)
| | - Soohak Chung
- Lotte R&D Center, Seoul 07594, Korea; (Y.K.); (S.C.); (G.-H.L.); (J.-W.P.)
| | - Gyeong-Hweon Lee
- Lotte R&D Center, Seoul 07594, Korea; (Y.K.); (S.C.); (G.-H.L.); (J.-W.P.)
| | - Jae-Woong Park
- Lotte R&D Center, Seoul 07594, Korea; (Y.K.); (S.C.); (G.-H.L.); (J.-W.P.)
| | - Bok-Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (D.-H.L.); (J.-K.W.); (W.-Y.H.); (B.-K.H.)
| | - Eui-Chul Shin
- Department of Food Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jeong-Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA; (J.-H.P.); (J.-K.K.)
| | - Jae-Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA; (J.-H.P.); (J.-K.K.)
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (D.-H.L.); (J.-K.W.); (W.-Y.H.); (B.-K.H.)
| |
Collapse
|
12
|
Lee YH, Yeo MH, Yoon SA, Hyun HB, Ham YM, Jung YH, Chang KS. Effects of Sargassum horneri and Ulva australis Extracts on Body Weight and Serum Glucose Levels of Sprague-Dawley Rats. Prev Nutr Food Sci 2021; 26:307-314. [PMID: 34737991 PMCID: PMC8531432 DOI: 10.3746/pnf.2021.26.3.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the safety and functionality of a functional additive for humans and animals from Sargassum horneri (SH) and Ulva australis (UA) waste for recycling marine refuse generated in large quantities in Jeju. Sprague-Dawley rats were orally administered functional additives at 2,000 mg/kg to assess 14-day repeated dose toxicity of the two extracts. For female rats, weight gain after administration of SH was 66.2±18.8% vs. controls. Male rats administered UA showed weight gain of 92.3±8.0% vs. controls. SH and UA significantly decreased serum glucose levels in male rats compared with controls (79.8±11.10% and 76.1±9.67%, respectively). Similarly, significant decrease in serum glucose levels were shown for female rats after administration of SH and UA (79.2±1.58% and 82.8±3.21%, respectively). Furthermore, rats showed significant differences vs. controls in several serological parameters after receiving extracts, however results remained within the normal range. Thus, the SH and UA extracts were considered safe substances that may be used as functional additives to help reduce body weight and serum glucose.
Collapse
Affiliation(s)
- Young-Hyeon Lee
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Korea
| | - Min-Ho Yeo
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Korea
| | - Seon-A Yoon
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Ho-Bong Hyun
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Young-Min Ham
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Yong-Hwan Jung
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Korea
| |
Collapse
|
13
|
Fernando IPS, Heo SJ, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Sanjeewa KKA, Lee K, Ahn G. (-)-Loliolide Isolated from Sargassum horneri Abate UVB-Induced Oxidative Damage in Human Dermal Fibroblasts and Subside ECM Degradation. Mar Drugs 2021; 19:435. [PMID: 34436274 PMCID: PMC8399698 DOI: 10.3390/md19080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.
Collapse
Affiliation(s)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea;
| | | | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Kalu Kapuge Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Jayewardenepura 10206, Sri Lanka;
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| |
Collapse
|
14
|
Dias MKHM, Madusanka DMD, Han EJ, Kim HS, Jeon YJ, Jee Y, Kim KN, Lee K, Fernando IPS, Ahn G. Sargassum horneri (Turner) C. Agardh ethanol extract attenuates fine dust-induced inflammatory responses and impaired skin barrier functions in HaCaT keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114003. [PMID: 33705923 DOI: 10.1016/j.jep.2021.114003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/09/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum horneri (Turner) C. Agardh is well known in East Asia as an edible brown alga rich in bioactive compounds. It has an ethnopharmacological significance in traditional Chinese medicine to treat inflammatory disorders varying from edema, furuncles, dysuria to cardiovascular diseases. AIM OF THE STUDY Surge of fine dust (FD), in densely populated areas, have been reported to cause adverse health conditions ranging from respiratory diseases to inflammatory skin disorders. The current study investigates the protective effects of an ethanol extract from S. horneri (SHE) on FD-induced inflammatory responses and impaired skin hydration in HaCaT keratinocytes. MATERIALS AND METHODS Intracellular reactive oxygen species (ROS) generation was evaluated with the 2',7'-Dichlorofluorescin diacetate (DCFH-DA) stain. Anti-inflammatory properties of SHE in FD-stimulated HaCaT keratinocytes were investigated for the suppression of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways and downregulation of pro-inflammatory cytokines. As a means of studying FD-induced skin barrier disruption and the effects of SHE on stratum corneum hydration-controlling factors, tight junction regulatory mediators, and hyaluronic acid (HA) production were evaluated using keratinocytes. RESULTS SHE suppressed the intracellular ROS production, simultaneously improving cell viability in FD-stimulated keratinocytes. Also, SHE upregulated anti-inflammatory cytokine interleukin (IL)-4 while downregulating inflammatory cytokines IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α; epidermal and epithelial cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and regulated upon activation, normally T-expressed, and presumably secreted expression and suppressed (RANTES) chemokine, MAPK and NF-κB mediators in a dose-dependent manner. Furthermore, SHE ameliorated filaggrin, involucrin, lymphoepithelial Kazal-type-related inhibitor (LEKTI), signifying its beneficial effects on deteriorated skin hydration caused by FD-induced inflammation. SHE further exhibited its skin protective effects regulating the tight junction proteins; Occludin, zonula occludens (ZO)-1, claudin-1, claudin-4, claudin-7, and claudin-23 while increasing the production of HA minimizing skin damage. CONCLUSIONS Anti-inflammatory effects of, SHE against FD-induced keratinocyte inflammation is attributable to the suppression of upstream MAPK and NF-κB mediators. SHE indicated potential anti-inflammatory properties attenuating deteriorated skin barrier function in HaCaT keratinocytes. The effects are attributable to the polyphenols and other antioxidant compounds in SHE. Further studies could envisage the use of SHE for developing rejuvenating cosmetics.
Collapse
Affiliation(s)
| | | | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon, 33662, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea.
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | | | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
15
|
Han EJ, Fernando IPS, Kim HS, Lee DS, Kim A, Je JG, Seo MJ, Jee YH, Jeon YJ, Kim SY, Ahn G. (-)-Loliolide Isolated from Sargassum horneri Suppressed Oxidative Stress and Inflammation by Activating Nrf2/HO-1 Signaling in IFN-γ/TNF-α-Stimulated HaCaT Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10060856. [PMID: 34071797 PMCID: PMC8229944 DOI: 10.3390/antiox10060856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023] Open
Abstract
The present study evaluated the effects of (-)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (-)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (-)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (-)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (-)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (-)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
| | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (D.-S.L.)
| | - Areum Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (A.K.); (Y.-H.J.)
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (Y.-J.J.)
| | - Min-Jeong Seo
- Freshwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea;
| | - Young-Heun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (A.K.); (Y.-H.J.)
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (Y.-J.J.)
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Korea
- Correspondence: (S.-Y.K.); (G.A.); Tel.: +82-33-815-4606 (S.-Y.K.); +82-61-659-7213 (G.A.); Fax: +82-33-255-7273 (S.-Y.K.); +82-61-659-7219 (G.A.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Correspondence: (S.-Y.K.); (G.A.); Tel.: +82-33-815-4606 (S.-Y.K.); +82-61-659-7213 (G.A.); Fax: +82-33-255-7273 (S.-Y.K.); +82-61-659-7219 (G.A.)
| |
Collapse
|
16
|
Han EJ, Kim SY, Han HJ, Kim HS, Kim KN, Fernando IPS, Madusanka DMD, Dias MKHM, Cheong SH, Park SR, Han YS, Lee K, Ahn G. UVB protective effects of Sargassum horneri through the regulation of Nrf2 mediated antioxidant mechanism. Sci Rep 2021; 11:9963. [PMID: 33976251 PMCID: PMC8113259 DOI: 10.1038/s41598-021-88949-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9'-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.
Collapse
Affiliation(s)
- Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Hee-Jin Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Janghang-eup, Seocheon, 33662, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Ilekuttige Priyan Shanura Fernando
- Control Center for Aquatic Animal Diseases, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea
| | | | | | - Sun Hee Cheong
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sang Rul Park
- Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Seok Han
- Neo Environmental Business Co., Daewoo Technopark, Doyak-ro, Bucheon, 14523, Republic of Korea
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
- Department of Marine Technology, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
17
|
Fernando IPS, Dias MKHM, Madusanka DMD, Kim HS, Han EJ, Kim MJ, Seo MJ, Ahn G. Effects of (-)-Loliolide against Fine Dust Preconditioned Keratinocyte Media-Induced Dermal Fibroblast Inflammation. Antioxidants (Basel) 2021; 10:antiox10050675. [PMID: 33925954 PMCID: PMC8144948 DOI: 10.3390/antiox10050675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
At present air pollution in parts of East Asia is at an alarming level due to elevated levels of fine dust (FD). Other than pulmonary complications, FD was found to affect the pathogenesis of ROS-dependent inflammatory responses via penetrating barrier-disrupted skin, leading to degradation of extracellular matrix components through the keratinocyte-fibroblast axis. The present study discloses the evaluation of human dermal fibroblast (HDF) responses to FD preconditioned human keratinocyte media (HPM) primed without and with (-)-loliolide (HTT). HPM-FD treatment increased the ROS level in HDFs and activated mitogen-activated protein kinase-derived nuclear factor (NF)-κB inflammatory signaling pathways with a minor reduction of viability. The above events led to cell differentiation and production of matrix metalloproteinases (MMP), increasing collagenase and elastase activity despite the increase of tissue inhibitors of metalloproteinases (TIMP). Media from HTT primed keratinocytes stimulated with FD indicated ameliorated levels of MMPs, inflammatory cytokines, and chemokines in HDFs with suppressed collagenase and elastase activity. Present observations help to understand the factors that affect HDFs in the microenvironment of FD exposed keratinocytes and the therapeutic role of HTT as a suppressor of skin aging. Further studies using organotypic skin culture models could broaden the understanding of the effects of FD and the therapeutic role of HTT.
Collapse
Affiliation(s)
| | | | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea;
| | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Jeong Seo
- Freshwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdong-gang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| |
Collapse
|
18
|
Silva J, Alves C, Martins A, Susano P, Simões M, Guedes M, Rehfeldt S, Pinteus S, Gaspar H, Rodrigues A, Goettert MI, Alfonso A, Pedrosa R. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. Int J Mol Sci 2021; 22:1888. [PMID: 33672866 PMCID: PMC7918146 DOI: 10.3390/ijms22041888] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Marco Simões
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Miguel Guedes
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Stephanie Rehfeldt
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Helena Gaspar
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal;
| | - Américo Rodrigues
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
19
|
Taira J. Oxidative Stress Modulators and Functional Foods. Antioxidants (Basel) 2021; 10:antiox10020191. [PMID: 33572753 PMCID: PMC7911941 DOI: 10.3390/antiox10020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Junsei Taira
- Department of Bioresources Technology, Okinawa College, National Institute of Technology, 905 Henoko, Okinawa, Nago 905-2192, Japan
| |
Collapse
|