1
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
2
|
Yang AY, Choi HJ, Kim K, Leem J. Antioxidant, Antiapoptotic, and Anti-Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules 2023; 28:molecules28062759. [PMID: 36985731 PMCID: PMC10057564 DOI: 10.3390/molecules28062759] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a severe inflammatory condition that can cause organ dysfunction, including acute kidney injury (AKI). Hesperetin is a flavonoid aglycone that has potent antioxidant and anti-inflammatory properties. However, the effect of hesperetin on septic AKI has not yet been fully investigated. This study examined whether hesperetin has a renoprotective effect on lipopolysaccharide (LPS)-induced septic AKI. Hesperetin treatment ameliorated histological abnormalities and renal dysfunction in LPS-injected mice. Mechanistically, hesperetin attenuated LPS-induced oxidative stress, as evidenced by the suppression of lipid and DNA oxidation. This beneficial effect of hesperetin was accompanied by downregulation of the pro-oxidant NADPH oxidase 4, restoration of glutathione levels, and activation of antioxidant enzymes. This flavonoid compound also inhibited apoptotic cell death via suppression of p53-dependent caspase-3 pathway. Furthermore, hesperetin alleviated Toll-like receptor 4-mediated cytokine production and macrophage infiltration. Our findings suggest that hesperetin ameliorates LPS-induced renal structural and functional injury through suppressing oxidative stress, apoptosis, and inflammation.
Collapse
|
3
|
Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Effects of Farrerol in a Mouse Model of Obstructive Uropathy. Curr Issues Mol Biol 2023; 45:337-352. [PMID: 36661510 PMCID: PMC9857068 DOI: 10.3390/cimb45010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive uropathy is a clinical condition that can lead to chronic kidney disease. However, treatments that can prevent the progression of renal injury and fibrosis are limited. Farrerol (FA) is a natural flavone with potent antioxidant and anti-inflammatory properties. Here, we investigated the effect of FA on renal injury and fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Mice underwent a sham or UUO operation and received intraperitoneal injections of FA (20 mg/kg) daily for 8 consecutive days. Histochemistry, immunohistochemistry and immunofluorescence staining, TdT-mediated dUTP nick end labeling assay, Western blotting, gene expression analysis, and biochemical tests were performed. FA attenuated renal dysfunction (p < 0.05) and ameliorated renal tubular injury (p < 0.01) and interstitial fibrosis (p < 0.001) in UUO mice. FA alleviated 4-hydroxynonenal expression (p < 0.001) and malondialdehyde levels (p < 0.01) by regulating pro-oxidant and antioxidant enzymes. Apoptosis in the kidneys of UUO mice was inhibited by FA (p < 0.001), and this action was accompanied by decreased expression of cleaved caspase-3 (p < 0.01). Moreover, FA alleviated pro-inflammatory cytokine production (p < 0.001) and macrophage infiltration (p < 0.01) in the kidneys of UUO mice. These results suggest that FA ameliorates renal injury and fibrosis in the UUO model by inhibiting oxidative stress, apoptosis, and inflammation.
Collapse
|
4
|
Protective Effects of Orexin A in a Murine Model of Cisplatin-Induced Acute Kidney Injury. J Clin Med 2022; 11:jcm11237196. [PMID: 36498769 PMCID: PMC9740499 DOI: 10.3390/jcm11237196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent widely used in the treatment of various cancers, but its application is often limited due to complications such as acute kidney injury (AKI). Orexins are hypothalamic neuropeptides that modulate the sleep-wake cycle, neuroendocrine function, and the autonomic nervous system. Emerging evidence suggests that orexin A (OXA) has anti-inflammatory and neuroprotective effects in animal models of neuroinflammatory diseases of the central nervous system. However, the effect of OXA on kidney diseases has not been examined. Here, we investigated whether OXA has a protective effect in a murine model of cisplatin-induced AKI. Intraperitoneal administration of OXA ameliorated renal dysfunction, and histological abnormalities in mice injected with cisplatin. OXA inhibited cisplatin-induced oxidative stress through the modulation of prooxidant and antioxidant enzymes. This peptide reduced apoptotic cell death by inhibiting the p53-mediated pathway in mice injected with cisplatin. OXA also alleviated cisplatin-induced cytokine production and macrophage infiltration into injured kidneys. Taken together, these results showed that OXA ameliorates cisplatin-induced AKI via antioxidant, anti-apoptotic, and anti-inflammatory actions. This peptide could be a potential therapeutic agent for cisplatin-induced AKI.
Collapse
|
5
|
Protective Effects of Carnosol on Renal Interstitial Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. Antioxidants (Basel) 2022; 11:antiox11122341. [PMID: 36552549 PMCID: PMC9774539 DOI: 10.3390/antiox11122341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease and is a promising therapeutic target. However, there is still limited treatment for renal fibrosis, so the development of new anti-fibrotic agents is urgently needed. Accumulating evidence suggest that oxidative stress and endoplasmic reticulum (ER) stress play a critical role in renal fibrosis. Carnosol (CS) is a bioactive diterpene compound present in rosemary plants and has potent antioxidant and anti-inflammatory properties. In this study, we investigated the potential effects of CS on renal injury and fibrosis in a murine model of unilateral ureteral obstruction (UUO). Male C57BL/6J mice underwent sham or UUO surgery and received intraperitoneal injections of CS (50 mg/kg) daily for 8 consecutive days. CS improved renal function and ameliorated renal tubular injury and interstitial fibrosis in UUO mice. It suppressed oxidative injury by inhibiting pro-oxidant enzymes and activating antioxidant enzymes. Activation of ER stress was also attenuated by CS. In addition, CS inhibited apoptotic and necroptotic cell death in kidneys of UUO mice. Furthermore, cytokine production and immune cell infiltration were alleviated by CS. Taken together, these findings indicate that CS can attenuate renal injury and fibrosis in the UUO model.
Collapse
|
6
|
Ban KY, Nam GY, Kim D, Oh YS, Jun HS. Prevention of LPS-Induced Acute Kidney Injury in Mice by Bavachin and Its Potential Mechanisms. Antioxidants (Basel) 2022; 11:2096. [PMID: 36358467 PMCID: PMC9686515 DOI: 10.3390/antiox11112096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) β and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCβ/MAPK/KLF5 axis.
Collapse
Affiliation(s)
- Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Ga-Young Nam
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
| |
Collapse
|
7
|
Corni Fructus Alleviates UUO-Induced Renal Fibrosis via TGF-β/Smad Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5780964. [PMID: 35572722 PMCID: PMC9106464 DOI: 10.1155/2022/5780964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Renal fibrosis is a type of chronic kidney disease (CKD) induced by infiltration of inflammatory cells, myofibroblast accumulation, and ECM production in the kidney. From a long time ago, Corni Fructus (CF) is known to supplement the liver and kidney with its tepid properties. In this study, we investigated the renal protective mechanism of CF, which is known to supplement the kidney, in rat model of unilateral ureteral obstruction (UUO). After inducing UUO through surgery, the group was separated (
) and the drug was administered for 2 weeks; normal rats (normal), water-treated UUO rats (control), CF 100 mg/kg-treated UUO rats (CF100), and CF 200 mg/kg-treated UUO rats (CF200). As a result of histopathological examination of kidney tissue with H&E, MT, and PAS staining, it was confirmed that the infiltration of inflammatory cells and the erosion of collagen were relatively decreased in the kidneys treated with CF. Also, CF significantly reduced the levels of MDA and BUN in serum. As a result of confirming the expression of the factors through western blotting, CF treatment significantly reduced the expression of NADPH oxidase and significantly regulated the AMPK/LKB1/NF-κB pathway associated with inflammation. In addition, it downregulated the expression of major fibrotic signaling factors, such as α-SMA, collagen I, MMP-2, and TIMP-1, and significantly regulated the TGF-β1/Smad pathway, which is known as a major regulator of renal fibrosis. Taken together, these findings indicate that CF can alleviate renal fibrosis by regulating the TGF-β1/Smad pathway through inhibition of oxidative stress in UUO.
Collapse
|
8
|
Oridonin Attenuates Cisplatin-Induced Acute Kidney Injury via Inhibiting Oxidative Stress, Apoptosis, and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3002962. [PMID: 35469348 PMCID: PMC9034941 DOI: 10.1155/2022/3002962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
The use of cisplatin, a chemotherapy drug, is often limited due to its renal side effects such as acute kidney injury (AKI). However, there are no validated medications to prevent or treat cisplatin-induced AKI. Oridonin is the major bioactive component of Isodon rubescens (Rabdosia rubescens) and exhibits anticancer, antioxidative, and anti-inflammatory effects. Recent studies have shown that oridonin alleviated a variety of inflammatory diseases, including renal diseases, in rodents. This study was aimed at investigating the potential renoprotective effect of oridonin on cisplatin-induced AKI. Male C57BL/6 mice were administered with cisplatin (20 mg/kg) with or without oridonin (15 mg/kg). Oridonin administration to mice after cisplatin injection attenuated renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by oridonin. Mechanistically, oridonin suppressed lipid peroxidation and reversed the decreased ratio of reduced to oxidized glutathione in cisplatin-injected mice. The increase in cisplatin-induced apoptosis was also alleviated by the compound. Moreover, oridonin inhibited cytokine overproduction and attenuated immune cell infiltration in cisplatin-injected mice. Altogether, these data demonstrated that oridonin alleviates cisplatin-induced kidney injury via inhibiting oxidative stress, apoptosis, and inflammation.
Collapse
|
9
|
Hispidulin Ameliorates Endotoxin-Induced Acute Kidney Injury in Mice. Molecules 2022; 27:molecules27062019. [PMID: 35335387 PMCID: PMC8948942 DOI: 10.3390/molecules27062019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death.
Collapse
|
10
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Zhang W, Qi R, Li T, Zhang X, Shi Y, Xu M, Zhu T. Kidney Organoids as a Novel Platform to Evaluate Lipopolysaccharide-Induced Oxidative Stress and Apoptosis in Acute Kidney Injury. Front Med (Lausanne) 2021; 8:766073. [PMID: 34912825 PMCID: PMC8666666 DOI: 10.3389/fmed.2021.766073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tingting Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuepeng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
12
|
Kim JY, Hong HL, Kim GM, Leem J, Kwon HH. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Molecules 2021; 26:molecules26247589. [PMID: 34946671 PMCID: PMC8705858 DOI: 10.3390/molecules26247589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Hyo-Lim Hong
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Gyun Moo Kim
- Department of Emergency Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Jaechan Leem
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| |
Collapse
|
13
|
Ding Y, Zhou DY, Yu H, Zhu T, Guo F, He Y, Guo XL, Lin YJ, Liu YJ, Yu YS. Upregulation of lncRNA NONRATG019935.2 suppresses the p53-mediated apoptosis of renal tubular epithelial cells in septic acute kidney injury. Cell Death Dis 2021; 12:771. [PMID: 34719669 PMCID: PMC8558325 DOI: 10.1038/s41419-021-03953-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Although increasing evidence has confirmed that the apoptosis of renal tubular epithelial cells (RTECs) is a crucial contributor to the onset and development of septic acute kidney injury (AKI), the pathological mechanism by which RTEC apoptosis is upregulated during septic AKI is not entirely clear. In this study, a rat model of septic AKI was induced by a cecal ligation puncture procedure or lipopolysaccharide (LPS) injection. Four differentially expressed long noncoding RNAs (DE-Lncs) in the rat model of septic AKI were determined using RNA-sequencing and verified by qRT-PCR. Among the four DE-Lncs, the expression level of lncRNA NONRATG019935.2 (9935) exhibited the most significant reduction in both septic AKI rats and LPS-treated NRK-52E cells (a rat RTEC line). The overexpression of 9935 suppressed cell apoptosis and p53 protein level in LPS-treated NRK-52E cells, and retarded septic AKI development in the rat model of septic AKI. Mechanistically, 9935 decreased the human antigen R (HuR)-mediated Tp53 mRNA stability by limiting the combination of HuR and the 3'UTR region of Tp53 mRNA in RTECs. The overexpression of HuR abrogated the inhibitory effect of pcDNA-9935 on the LPS-induced apoptosis of NRK-52E and rat primary RTECs. In conclusion, 9935 exerts its role in septic AKI by suppressing the p53-mediated apoptosis of RTECs, and this essential role of 9935 relies on its destructive effect on HuR-mediated Tp53 mRNA stability.
Collapse
Affiliation(s)
- Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China.
| | - Dao-Yang Zhou
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Tao Zhu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China
| | - Feng Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yang He
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| | - Xiu-Liu Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yong-Jun Lin
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Yu-Jiao Liu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 310018, Hangzhou, Zhejiang, China
| | - Yun-Song Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Gwon MG, Gu H, Leem J, Park KK. Protective Effects of 6-Shogaol, an Active Compound of Ginger, in a Murine Model of Cisplatin-Induced Acute Kidney Injury. Molecules 2021; 26:5931. [PMID: 34641472 PMCID: PMC8512008 DOI: 10.3390/molecules26195931] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Acute kidney injury (AKI) is a dose-limiting side effect of cisplatin therapy in cancer patients. However, effective therapies for cisplatin-induced AKI are not available. Oxidative stress, tubular cell death, and inflammation are known to be the major pathological processes of the disease. 6-Shogaol is a major component of ginger and exhibits anti-oxidative and anti-inflammatory effects. Accumulating evidence suggest that 6-shogaol may serve as a potential therapeutic agent for various inflammatory diseases. However, whether 6-shogaol exerts a protective effect on cisplatin-induced renal side effect has not yet been determined. The aim of this study was to evaluate the effect of 6-shogaol on cisplatin-induced AKI and to investigate its underlying mechanisms. An administration of 6-shogaol after cisplatin treatment ameliorated renal dysfunction and tubular injury, as shown by a reduction in serum levels of creatinine and blood urea nitrogen and an improvement in histological abnormalities. Mechanistically, 6-shogaol attenuated cisplatin-induced oxidative stress and modulated the renal expression of prooxidant and antioxidant enzymes. Apoptosis and necroptosis induced by cisplatin were also suppressed by 6-shogaol. Moreover, 6-shogaol inhibited cisplatin-induced cytokine production and immune cell infiltration. These results suggest that 6-shogaol exhibits therapeutic effects against cisplatin-induced AKI via the suppression of oxidative stress, tubular cell death, and inflammation.
Collapse
Affiliation(s)
- Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-G.G.); (H.G.); (K.-K.P.)
| | - Hyemin Gu
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-G.G.); (H.G.); (K.-K.P.)
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (M.-G.G.); (H.G.); (K.-K.P.)
| |
Collapse
|
15
|
Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. ACTA ACUST UNITED AC 2021; 57:medicina57070689. [PMID: 34356970 PMCID: PMC8307392 DOI: 10.3390/medicina57070689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022]
Abstract
Background and objectives: At present, there is insufficient evidence to support the use of continuous veno-venous haemofiltration (CVVH) in the early treatment of septic shock. This study focuses on the association between survival and different parameters of oxidative stress (RedOx). Thereby, we evaluated whether RedOx markers are associated with the outcome of septic shock in patients under early-initiated CVVH treatment. Materials and Methods: We conducted a prospective observational study of 65 patients with septic shock who started CVVH within 12 h after hospital admission. Blood samples were taken from each patient prior to the start of CVVH. The following RedOx markers were measured: glutathione peroxidase, glutathione reductase (GR), total antioxidant capacity, superoxide dismutase, nitric oxide, malondialdehyde and 4-hydroxynonenal. The odds ratio (OR) was calculated using binary logistic regression and stepwise multivariable regression. Results: The 65 patients had a median age of 66 years and 39 were male. Based on the outcome, the patients were divided into two groups—non-survivors (n = 29) and survivors (n = 36)—and the levels of RedOx markers were compared between them. Of all the markers, only higher GR activity was found to be significantly associated with the fatal outcome; 100.3 U/L versus 60.5 U/L, OR = 1.027 (95% CI, 1.010–1.044). Following adjustment for the sequential organ failure assessment score and other parameters, GR activity still presented a significant association with the fatal outcome, OR = 1.020 (95% CI, 1.002–1.038). Conclusions: GR activity is associated with in-hospital fatal outcomes among septic shock patients under early-initiated CVVH treatment. Septic shock patients who have a lower GR activity at hospital admission may have a favourable outcome of the early initiation of CVVH.
Collapse
|
16
|
Alpinetin Attenuates Persistent Inflammation, Immune Suppression, and Catabolism Syndrome in a Septic Mouse Model. J Immunol Res 2021; 2021:9998517. [PMID: 34285925 PMCID: PMC8275435 DOI: 10.1155/2021/9998517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Patients who survive the acute phase of sepsis can progress to persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which usually results in extended recovery periods and multiple complications. Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has been demonstrated to have anti-inflammatory, antibacterial, and antioxidant activities. The aim of this study was to investigate whether the administration of alpinetin could attenuate PICS in a septic mouse model. Mice were randomly divided into four groups: the (1) sham-operated group, (2) sham+alpinetin (1 mg/kg intravenously infused for once per day after sham operation), (3) cecal ligation and puncture (CLP), and (4) CLP+alpinetin (50 mg/kg intravenously infused for once per day after CLP). Eight days after sham operation or CLP surgery, mice were euthanized for subsequent examination. Alpinetin significantly improved the survival of septic mice. Also, it attenuated the CLP-induced persistent inflammation, immunosuppression, and catabolism syndrome. The level of plasma proinflammatory cytokines and apoptosis of T lymphocytes were obviously decreased by alpinetin as well. Moreover, oxidative stress in the organs was compelling lower in the alpinetin-treated CLP mice. In this clinically relevant model of sepsis, alpinetin ameliorates CLP-induced organ dysfunction and improves the likelihood of survival, possibly through suppressing the inflammatory response, oxidative stress, and apoptosis. These findings suggested that alpinetin could be a potential novel therapeutic approach to prevent sepsis-induced PICS.
Collapse
|
17
|
Zhang J, Wang C, Kang K, Liu H, Liu X, Jia X, Yu K. Loganin Attenuates Septic Acute Renal Injury with the Participation of AKT and Nrf2/HO-1 Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:501-513. [PMID: 33603340 PMCID: PMC7886113 DOI: 10.2147/dddt.s294266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023]
Abstract
Purpose Sepsis, a destructive inflammatory response syndrome, is the principal reason to induce death in the intensive care unit. Loganin has been proved to possess the property of anti-inflammation, antioxidant, neuroprotection, and sedation. The primary aim of this study was to evaluate whether Loganin could alleviate acute kidney injury (AKI) during sepsis and investigate the latent mechanisms. Methods Septic AKI models were established by cecal ligation and puncture (CLP) surgery in mice and given Loganin (20, 40, 80 mg/kg) by gavage. Lipopolysaccharides (LPS)-stimulated human kidney proximal tubular (HK2) cells incubated in Loganin (5, 10, 20 μ M) were used to explore the accurate mechanisms. Survival rate, renal function (creatinine and blood urea nitrogen), and renal pathological changes were detected in septic mice. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), mitochondrial membrane potential, mitochondrial calcium overload, and nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway activation in vivo and in vitro were determined by commercial kits and Western blot. Cell apoptosis, apoptotic-related protein (cleaved caspase-3, Bcl-2, and Bax) expression and protein kinase B (AKT) phosphorylation in vivo and in vitro were measured by TUNEL staining and Western blot. Finally, AKT blockage by 10 μM LY294002 or Nrf2 inhibition by10 μ M ML385 were utilized to prove the involvement of AKT and Nrf2/HO-1 pathway in AKI during sepsis. Results We found Loganin treatment (20, 40, 80 mg/kg) mitigated septic AKI reflected by elevated renal function and palliative pathological changes. Oxidative stress and apoptosis in the kidney and LPS-treated HK2 cells were also inhibited by Loganin administration, which was accompanied by AKT and Nrf2/HO-1 pathway activation. Besides, the protective effects of Loganin could be diminished by AKT or Nrf2 blockage, indicating the involvement of AKT and Nrf2/HO-1 pathway. Conclusion The results suggested that the protective effects of Loganin on AKI during sepsis might be mediated by AKT and Nrf2/HO-1 pathway signaling activation in kidney proximal tubular cells.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Xiaowei Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Xiaonan Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| |
Collapse
|
18
|
Inhibition of p300 by Garcinol Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress, Inflammation, and Tubular Cell Death in Mice. Antioxidants (Basel) 2020; 9:antiox9121271. [PMID: 33327548 PMCID: PMC7765028 DOI: 10.3390/antiox9121271] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that epigenetic mechanisms such as histone modification are crucially involved in the pathophysiology of acute kidney injury (AKI). The histone acetyltransferase p300 regulates several biological processes through the acetylation of histones or transcription factors. However, the role of p300 in cisplatin-induced AKI remains poorly understood. Therefore, we investigated the effects of garcinol, a potent p300 inhibitor, on cisplatin-induced AKI and explored the mechanisms. Administration of garcinol significantly reversed the upregulation of p300 and increased acetylation of histone H3, along with amelioration of renal dysfunction and histopathological injury in the kidneys of cisplatin-injected mice. Garcinol also attenuated oxidative stress and reduced expression of pro-oxidant enzymes. In addition, garcinol reduced the elevated production of cytokines and chemokines and suppressed immune cell accumulation together with downregulation of vascular adhesion molecules. These beneficial effects of garcinol were associated with a reduction in acetylation of the p65 subunit of nuclear factor kappa-B. Further, garcinol significantly inhibited apoptosis and caspase-3 activation, with a decrease in p53 acetylation in cisplatin-injected mice. Taken together, we demonstrated that the inhibition of p300 by garcinol ameliorated cisplatin-induced renal injury, presumably through epigenetic mechanisms. These results suggest that garcinol might be a potential preventive agent for cisplatin-induced AKI.
Collapse
|
19
|
Kim JY, Jo J, Leem J, Park KK. Kahweol Ameliorates Cisplatin-Induced Acute Kidney Injury through Pleiotropic Effects in Mice. Biomedicines 2020; 8:biomedicines8120572. [PMID: 33291262 PMCID: PMC7762132 DOI: 10.3390/biomedicines8120572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jungmin Jo
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence:
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
20
|
Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects of Apamin in a Murine Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules 2020; 25:molecules25235717. [PMID: 33287398 PMCID: PMC7731169 DOI: 10.3390/molecules25235717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.
Collapse
|