1
|
Maldonado-Sanabria LA, Rodriguez-Saavedra IN, Reyes-Peña IV, Castillo-Aguirre A, Maldonado M, Crespo A, Esteso MA. Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. Int J Mol Sci 2024; 25:10010. [PMID: 39337498 PMCID: PMC11432429 DOI: 10.3390/ijms251810010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
C-tetra(4-methoxyphenyl)calix[4]resorcinarene was synthesized by hydrochloric acid-catalysed cyclocondensation of resorcinol and 4-methoxybenzaldehyde. Under these conditions, the reaction produces a conformational mixture of crown and chair structural conformers, which were separated and characterized by chromatographic and spectroscopic techniques. The antioxidant activity of both conformers was measured by using the DPPH assay, through which it was observed that the chair conformer showed greater antioxidant activity (IC50 = 47.46 ppm) than the crown conformer (IC50 = 78.46 ppm). Additionally, it was observed that the mixture of both conformers presented lower antioxidant activity than either conformer in isolation. The results found suggest that the chair conformer has efficient antioxidant activity that makes it a potential target for further research.
Collapse
Affiliation(s)
- Laura Angélica Maldonado-Sanabria
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ivette Nicole Rodriguez-Saavedra
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ingrid Valentina Reyes-Peña
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Almudena Crespo
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
2
|
Ahmad MS, Hawaiz FE. Novel chalcone-based crown ethers: synthesis, characterization, antioxidant activity, biological evaluations, and wastewater remediation. RSC Adv 2024; 14:2369-2379. [PMID: 38213971 PMCID: PMC10783163 DOI: 10.1039/d3ra08133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Macrocycles play a pivotal and indispensable role within the realms of both medicine and industry. In the course of our research endeavors, we have successfully synthesized five distinct macrocyclic chalcone entities, each showcasing remarkable biological and anti-oxidative properties. Furthermore, these compounds exhibit exceptional promise as potent agents for the removal of dyes in wastewater treatment processes. The synthesis of these key constituents was achieved through the judicious application of the Robinson ether synthesis and Claisen-Schmidt condensation reactions. The structures of compounds 1a-f and 2a-e were characterized by using analytical techniques such as FTIR, 1H NMR, 13C NMR, and DEPT 13C NMR spectroscopy. These macrocycles also underwent in vitro assessments to measure their antibacterial activity using the agar well diffusion method. The results revealed that the macrocyclics were more sensitive to Gram-positive than Gram-negative bacteria. For example, compound 2d exhibited an inhibition zone of 20 mm at 150 ppm. The antioxidant activity as determined via the DPPH method established that all tested compounds showed moderate radical-scavenging ability. Specifically, compound 2e (at 1000 ppm) exhibited antioxidant activity of 79% inhibition of radicals, in comparison to 90% for the standard ascorbic acid. The latter was demonstrated by using methylene blue as an adsorbate under simulated wastewater conditions. Outstandingly, the most effective compounds were 2d and 2c, which achieved removal rates of 96.54% and 92.37%, respectively, for methylene blue dye.
Collapse
Affiliation(s)
- Muhamad Salam Ahmad
- Department of Chemistry, College of Education, Salahaddin University-Erbil Kurdistan Iraq
| | - Farouq Emam Hawaiz
- Department of Chemistry, College of Education, Salahaddin University-Erbil Kurdistan Iraq
| |
Collapse
|
3
|
Shiabiev I, Pysin D, Akhmedov A, Babaeva O, Babaev V, Lyubina A, Voloshina A, Petrov K, Padnya P, Stoikov I. Towards Antibacterial Agents: Synthesis and Biological Activity of Multivalent Amide Derivatives of Thiacalix[4]arene with Hydroxyl and Amine Groups. Pharmaceutics 2023; 15:2731. [PMID: 38140072 PMCID: PMC10747887 DOI: 10.3390/pharmaceutics15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups. A series of macrocyclic compounds in cone, partial cone, and 1,3-alternate stereoisomeric forms containing -NHCH2CH2R (R = NH2, N(CH3)2, and OH) and -N(CH2CH2OH)2 terminal fragments, and their model non-macrocyclic analogues were obtained. The antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and cytotoxicity of the obtained compounds were studied. Structure-activity relationships were established: (1) the macrocyclic compounds had high antibacterial activity, while the monomeric compounds had low activity; (2) the compounds in cone and partial cone conformations had better antibacterial activity compared to the compounds in 1,3-alternate stereoisomeric form; (3) the macrocyclic compounds containing -NHCH2CH2N(CH3)2 terminal fragments had the highest antibacterial activity; (4) introduction of additional terminal hydroxyl groups led to a significant decrease in antibacterial activity; (5) the compounds in partial cone conformation had significant bactericidal activity against all studied cell strains; the best selectivity was observed for the compounds in cone conformation. The mechanism of antibacterial activity of lead compounds with terminal fragments -NHCH2CH2N(CH3)2 was proved using model negatively charged POPG vesicles, i.e., the addition of these compounds led to an increase in the size and zeta potential of the vesicles. The obtained results open up the possibility of using the synthesized macrocyclic compounds as promising antibacterial agents.
Collapse
Affiliation(s)
- Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Alan Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Vasily Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| |
Collapse
|
4
|
Bhujbal SP, Hah JM. An Intriguing Purview on the Design of Macrocyclic Inhibitors for Unexplored Protein Kinases through Their Binding Site Comparison. Pharmaceuticals (Basel) 2023; 16:1009. [PMID: 37513921 PMCID: PMC10386424 DOI: 10.3390/ph16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Kinases play an important role in regulating various intracellular signaling pathways that control cell proliferation, differentiation, survival, and other cellular processes, and their deregulation causes more than 400 diseases. Consequently, macrocyclization can be considered a noteworthy approach to developing new therapeutic agents for human diseases. Macrocyclization has emerged as an effective drug discovery strategy over the past decade to improve target selectivity and potency of small molecules. Small compounds with linear structures upon macrocyclization can lead to changes in their physicochemical and biological properties by firmly reducing conformational flexibility. A number of distinct protein kinases exhibit similar binding sites. Comparison of protein binding sites provides crucial insights for drug discovery and development. Binding site similarities are helpful in understanding polypharmacology, identifying potential off-targets, and repurposing known drugs. In this review, we focused on comparing the binding sites of those kinases for which macrocyclic inhibitors are available/studied so far. Furthermore, we calculated the volume of the binding site pocket for each targeted kinase and then compared it with the binding site pocket of the kinase for which only acyclic inhibitors were designed to date. Our review and analysis of several explored kinases might be useful in targeting new protein kinases for macrocyclic drug discovery.
Collapse
Affiliation(s)
- Swapnil P Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
5
|
Molaei S, Dadkhah Tehrani A, Shamlouei H. Antioxidant Activates of New Carbohydrate Based Gallate Derivatives: A DFT Study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Zhang Y, Li Y, Ren X, Zhang X, Wu Z, Liu L. The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chem 2023; 402:134231. [DOI: 10.1016/j.foodchem.2022.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023]
|
7
|
Aktanova AA, Boeva OS, Barkovskaya MS, Kovalenko EA, Pashkina EA. Influence of Cucurbiturils on the Production of Reactive Oxygen Species by T- and B-Lymphocytes, Platelets and Red Blood Cells. Int J Mol Sci 2023; 24:ijms24021441. [PMID: 36674954 PMCID: PMC9864653 DOI: 10.3390/ijms24021441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive chemical molecules containing oxygen. ROS play an important role in signaling and cell homeostasis at low and moderate concentrations. ROS could be a cause of damage to proteins, nucleic acids, lipids, membranes and organelles at high concentrations. There are a lot of cells that can produce ROS to maintain functional activity. It is known that metal nanoparticles can increase production of ROS in cells. However, the effect of cucurbiturils on ROS production is still unknown. In our study, we evaluated production of ROS by the immune (T-, B-lymphocytes, NK-cells) and non-immune cells (red blood cells, platelets), as well as tumor cells line (1301, K562) after treatment with cucurbiturils in vitro. Assessment of reactive oxide species (ROS) were provided by using dihydrorhodamine 123 (DHR 123). Fluorescence intensity and percentage DHR123 were measured by flow cytometry. Platelets, erythrocytes and activated T-helpers were changed the level of ROS production in response to stimulation with cucurbiturils. It was found that the percentage of these ROS-producing cells was reduced by cucurbiturils. Thus, cucurbiturils may affect the production of ROS by cells, but further research is needed in this area.
Collapse
Affiliation(s)
- Alina A. Aktanova
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Olga S. Boeva
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
- Department of Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Margarita Sh. Barkovskaya
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Ekaterina A. Kovalenko
- Laboratory of Cluster and Supramolecular Chemistry, Nicolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
- Correspondence:
| | - Ekaterina A. Pashkina
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| |
Collapse
|
8
|
Production of reactive oxygen species by neutrophils and macrophages of F1 hybrid mice (C57Bl6xCBA) in response to stimulation with cucurbit(n)urils (n = 6, 7, 8). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Due to their very small size, nanomaterials, in particular cucurbiturils, have unique physical and chemical properties that find their application in medicine. However, the toxicity of cucurbiturils is not fully understood; in particular, we are interested in the immunological safety of their use. One of the mechanisms of nanotoxicity is the formation of reactive oxygen species (ROS) by macrophages and neutrophils. Hyperproduction of ROS can lead to oxidative stress and further damage to cell DNA with loss of physiological function and development of pathology. The aim. Evaluation of the effect of cucurbit[n]urils (n = 6, 7, 8) on the production of reactive oxygen species by mice macrophages and neutrophils. Materials and methods. F1 hybrid mice (CBAxC57Bl/6) aged 2 months (n = 11) were used in the work. Evaluation of superoxide radical production by peritoneal mouse neutrophils and macrophages was carried out by spectrophotometric method for determining the reduction of p-nitroblue tetrazolium (NBT) to formazan. Results. It was shown that CB[6] and CB[7] at concentrations of 0.5 and 0.3 mM do not have an inhibitory effect on ROS synthesis, but, on the contrary, significantly increase ROS production by macrophages. In addition, CB[6] 0.3 mM increases the level of ROS in neutrophils. Conclusion. Cucurbiturils can lead to an increase in the production of ROS in immunocompetent cells, depending on the concentration used (0.3 mM and higher).
Collapse
|
9
|
Tayade K, Yeom GS, Sahoo SK, Puschmann H, Nimse SB, Kuwar A. Exploration of Molecular Structure, DFT Calculations, and Antioxidant Activity of a Hydrazone Derivative. Antioxidants (Basel) 2022; 11:2138. [PMID: 36358512 PMCID: PMC9686989 DOI: 10.3390/antiox11112138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The hydrazine derivatives are known to possess several biological activities including anticancer, antibacterial and anti-fungal, anticonvulsant, and antioxidant. This communication presents the synthesis, X-ray crystal structure analysis, DFT calculations, cell cytotoxicity, and antioxidant activity of the Schiff base 4,4'-((1E,1'E)-hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (compound 2). We have also isolated the side product compound 1 and characterized it using single X-ray crystallography. The crystal structure of compound 1 depicts that the ensuing C-H···N hydrogen bonding interaction is presented and discussed herein. In addition, the calculations using density functional theory (DFT) approximation supported by experimental 1H and 13C NMR studies on the key compound 2 are reported. The results of theoretical and experimental 1H and 13C NMR were concordant. The antioxidant activity of compound 2 was determined by using 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) radical cation assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Compound 2 demonstrated excellent antioxidant activity in ABTS assay (IC50 = 4.30 ± 0.21 µM) and DPPH assay (IC50 = 81.06 ± 0.72 µM) with almost no cytotoxicity below 25 µM.
Collapse
Affiliation(s)
- Kundan Tayade
- School of Chemical Sciences, North Maharashtra University, Jalgaon 425001, India
- Department of Chemistry and Analytical Chemistry, Rajarshi Shahu Mahavidyalaya, Latur 413512, India
| | - Gyu-Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Suban K. Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat 395007, India
| | - Horst Puschmann
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Anil Kuwar
- School of Chemical Sciences, North Maharashtra University, Jalgaon 425001, India
| |
Collapse
|
10
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Development of small macrocyclic kinase inhibitors. Future Med Chem 2022; 14:389-391. [PMID: 35029506 DOI: 10.4155/fmc-2021-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Fahmy S, Issa MY, Saleh BM, Meselhy MR, Azzazy HMES. Peganum harmala Alkaloids Self-Assembled Supramolecular Nanocapsules with Enhanced Antioxidant and Cytotoxic Activities. ACS OMEGA 2021; 6:11954-11963. [PMID: 34056350 PMCID: PMC8153973 DOI: 10.1021/acsomega.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 05/27/2023]
Abstract
Amphiphilic macrocycles, such as p-sulfonatocalix[6]arenes (p-SC6), have demonstrated great potential in designing synthetic nanovesicles based on self-assembly approaches. These supramolecular nanovesicles are capable of improving the solubility, stability, and biological activity of various drugs. In the present study, the biologically active harmala alkaloid-rich fraction (HARF) was extracted from Peganum harmala L. seeds. Ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC/ESI-MS) analysis of HARF revealed 15 alkaloids. The reversed-phase high-performance liquid chromatography (RP-HPLC) analysis revealed three peaks: peganine, harmol, and harmine. The HARF was then encapsulated in p-SC6 nanocapsules employing a thin-film hydration approach. The designed nanocapsules had an average particle size of 264.8 ± 10.6 nm, and a surface charge of -30.3 ± 2.2 mV. They were able to encapsulate 89.3 ± 1.4, 74.4 ± 1.3, and 76.1 ± 1.7% of the three harmala alkaloids; harmine, harmol, and peganine; respectively. The in vitro drug release experiments showed the potential of the designed nanocapsules to release their cargo at a pH of 5.5 (typical of cancerous tissue). The IC50 values of HARF encapsulated in p-SC6 (H/p-SC6 nanocapsules) were 5 and 2.7 μg/mL against ovarian cancer cells (SKOV-3) and breast adenocarcinoma cells (MCF-7), respectively. The prepared nanocapsules were found to be biocompatible when tested on human skin fibroblasts. Additionally, the antioxidant activity of the designed nanocapsules was 5 times that of the free powder fraction; the IC50 of the H/p-SC6 nanocapsules was 30.1 ± 1.3 μg/mL, and that of the HARF was 169.3 ± 7.2 μg/mL. In conclusion, encapsulation of P. harmala alkaloid-rich fraction into self-assembled p-SC6 significantly increases its antioxidant and cytotoxic activities.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Basma M. Saleh
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Meselhy Ragab Meselhy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
13
|
Araujo-Chaves JC, Miranda ÉGA, Lopes DM, Yokomizo CH, Carvalho-Jr WM, Nantes-Cardoso IL. Antioxidant cytochrome c-like activity of para-Mn (III)TMPyP. Biochimie 2021; 184:116-124. [PMID: 33662439 DOI: 10.1016/j.biochi.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Manganese porphyrins are well-known protectors against the deleterious effects of pro-oxidant species such as superoxide ions and hydrogen peroxide. The present study investigated the antioxidant cytochrome c-like activities of Mn(III)TMPyP [meso-tetrakis (4-N-methyl pyridinium) porphyrin] against superoxide ion and hydrogen peroxide that remained unexplored for this porphyrin. The association of TMPyP with a model of the inner mitochondrial membrane, cardiolipin (CL)-containing liposomes, shifted +30 mV vs. NHE (normal hydrogen electrode) redox potential of the Mn(II)/Mn(III) redox couple. In CL-containing liposomes, Mn(III)TMPyP was reduced by superoxide ions and recycled by Fe(III)cytochrome c to the oxidized form. Similarly, isolated rat liver mitoplasts added to a sample of Mn(II)TMPyP promoted immediate porphyrin reoxidation by electron transfer to the respiratory chain. These results show that Mn(III)TMPyP can act as an additional pool of Fe(III)cytochrome c capable of transferring electrons that escape from the IV complex back into the respiratory chain. Unlike Fe(II)cytochrome c, Mn(II)TMPyP was not efficient for hydrogen peroxide clearance. Therefore, by reducing cytochrome c, Mn(II)TMPyP can indirectly contribute to hydrogen peroxide elimination.
Collapse
Affiliation(s)
- Juliana C Araujo-Chaves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Érica G A Miranda
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - David M Lopes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - César H Yokomizo
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Waldemir M Carvalho-Jr
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Iseli L Nantes-Cardoso
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil.
| |
Collapse
|