1
|
Xu X, Geng F, Sun W. Quantitative proteomics and metabolomics analysis reveals the response mechanism of alfalfa (Medicago sativa L.) to o-coumaric acid stress. PLoS One 2023; 18:e0295592. [PMID: 38064475 PMCID: PMC10707586 DOI: 10.1371/journal.pone.0295592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
O-coumaric acid (OCA), as a significant phenolic allelochemical found in hairy vetch (Vicia villosa Roth.), that can hinder the growth of alfalfa (Medicago sativa L.), particularly the growth of alfalfa roots. Nonetheless, the mechanism by which OCA inhibits alfalfa root growth remains unclear. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS)-based quantitative proteomics analysis was carried out to identify differentially accumulated proteins (DAPs) under OCA treatment. The findings indicated that 680 proteins were DAPs in comparison to the control group. Of those, 333 proteins were up-regulated while 347 proteins were down-regulated. The enrichment analysis unveiled the significance of these DAPs in multiple biological and molecular processes, particularly in ribosome, phenylpropanoid biosynthesis, glutathione metabolism, glycolysis/gluconeogenesis and flavonoid biosynthesis. The majority of DAPs reside in the cytoplasm (36.62%), nucleus (20.59%) and extracellular space (14.12%). In addition, phenylalanine deaminase was identified as a potential chemical-induced regulation target associated with plant lignin formation. DAPs were mainly enriched in flavonoid biosynthesis pathways, which were related to plant root size. Using the UPLC-ESI-MS/MS technique and database, a total of 87 flavonoid metabolites were discovered. The metabolites were predominantly enriched for biosynthesizing naringenin chalcone, which was linked to plant lignin formation, aligning with the enrichment outcomes of DAPs. Consequently, it was deduced that OCA impacted the structure of cell walls by mediating the synthesis of lignin in alfalfa roots, subsequently inducing wilt. Furthermore, a range of proteins have been identified as potential candidates for the breeding of alfalfa strains with enhanced stress tolerance.
Collapse
Affiliation(s)
- Xiaoyang Xu
- School of Economics and Management, Shandong Agricultural University, Shandong, China
| | - Feilong Geng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Weihong Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
3
|
Xie E, Nadeem U, Xie B, D’Souza M, Sulakhe D, Skondra D. Using Computational Drug-Gene Analysis to Identify Novel Therapeutic Candidates for Retinal Neuroprotection. Int J Mol Sci 2022; 23:ijms232012648. [PMID: 36293505 PMCID: PMC9604082 DOI: 10.3390/ijms232012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Retinal cell death is responsible for irreversible vision loss in many retinal disorders. No commercially approved treatments are currently available to attenuate retinal cell loss and preserve vision. We seek to identify chemicals/drugs with thoroughly-studied biological functions that possess neuroprotective effects in the retina using a computational bioinformatics approach. We queried the National Center for Biotechnology Information (NCBI) to identify genes associated with retinal neuroprotection. Enrichment analysis was performed using ToppGene to identify compounds related to the identified genes. This analysis constructs a Pharmacome from multiple drug-gene interaction databases to predict compounds with statistically significant associations to genes involved in retinal neuroprotection. Compounds with known deleterious effects (e.g., asbestos, ethanol) or with no clinical indications (e.g., paraquat, ozone) were manually filtered. We identified numerous drug/chemical classes associated to multiple genes implicated in retinal neuroprotection using a systematic computational approach. Anti-diabetics, lipid-lowering medicines, and antioxidants are among the treatments anticipated by this analysis, and many of these drugs could be readily repurposed for retinal neuroprotection. Our technique serves as an unbiased tool that can be utilized in the future to lead focused preclinical and clinical investigations for complex processes such as neuroprotection, as well as a wide range of other ocular pathologies.
Collapse
Affiliation(s)
- Edward Xie
- Chicago Medical School at Rosalind, Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mark D’Souza
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dinanath Sulakhe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| |
Collapse
|
4
|
Puddu A, Ravera S, Panfoli I, Bertola N, Maggi D. High Glucose Impairs Expression and Activation of MerTK in ARPE-19 Cells. Int J Mol Sci 2022; 23:ijms23031144. [PMID: 35163068 PMCID: PMC8835591 DOI: 10.3390/ijms23031144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of photoreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is impaired in several pathologies, including diabetes. In this study, we investigate whether hyperglycemic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) medium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phagocytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy;
- Correspondence:
| | - Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132 Genova, Italy; (S.R.); (N.B.)
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132 Genova, Italy;
| | - Nadia Bertola
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132 Genova, Italy; (S.R.); (N.B.)
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy;
| |
Collapse
|
5
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
6
|
Fu J, Aung MH, Prunty MC, Hanif AM, Hutson LM, Boatright JH, Pardue MT. Tauroursodeoxycholic Acid Protects Retinal and Visual Function in a Mouse Model of Type 1 Diabetes. Pharmaceutics 2021; 13:1154. [PMID: 34452115 PMCID: PMC8400977 DOI: 10.3390/pharmaceutics13081154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Previous studies demonstrated that systemic treatment with tauroursodeoxycholic acid (TUDCA) is protective in in vivo mouse models of retinal degeneration and in culture models of hyperglycemia. This study tested the hypothesis that TUDCA will preserve visual and retinal function in a mouse model of early diabetic retinopathy (DR). METHODS Adult C57BL/6J mice were treated with streptozotocin (STZ) and made diabetic at 8-10 weeks of age. Control and diabetic mice were treated with vehicle or TUDCA starting 1 or 3 weeks after induction of diabetes, and were assessed bimonthly for visual function via an optomotor response and monthly for retinal function via scotopic electroretinograms. RESULTS Diabetic mice showed significantly reduced spatial frequency and contrast sensitivity thresholds compared to control mice, while diabetic mice treated early with TUDCA showed preservation at all timepoints. A-wave, b-wave, and oscillatory potential 2 (OP2) amplitudes decreased in diabetic mice. Diabetic mice also exhibited delays in a-wave and OP2-implicit times. Early TUDCA treatment ameliorated a-wave, b-wave, and OP2 deficits. Late TUDCA treatment showed reduced preservation effects compared to early treatment. CONCLUSIONS Early TUDCA treatment preserved visual function in an STZ-mouse model of Type I diabetes. These data add to a growing body of preclinical research that may support testing whether TUDCA may be an effective early clinical intervention against declining visual function caused by diabetic retinopathy.
Collapse
Affiliation(s)
- Jieming Fu
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22904, USA
| | - Moe H. Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Megan C. Prunty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Case Western Reserve University School of Medicine, Urology Institute of University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam M. Hanif
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Lauren M. Hutson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jeffrey H. Boatright
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; (J.F.); (M.H.A.); (M.C.P.); (A.M.H.); (L.M.H.)
- Neuroscience, Emory University, Atlanta, GA 30322, USA
- Ophthalmology, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Berdugo M, Delaunay K, Lebon C, Naud MC, Radet L, Zennaro L, Picard E, Daruich A, Beltrand J, Kermorvant-Duchemin E, Polak M, Crisanti P, Behar-Cohen FF. Long-Term Oral Treatment with Non-Hypoglycemic Dose of Glibenclamide Reduces Diabetic Retinopathy Damage in the Goto-KakizakiRat Model. Pharmaceutics 2021; 13:pharmaceutics13071095. [PMID: 34371786 PMCID: PMC8308933 DOI: 10.3390/pharmaceutics13071095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of vision loss, due to macular edema, retinal ischemia and death of retinal neurons. We previously demonstrated that acute administration of glibenclamide into the vitreous, or given orally at a non-hypoglycemic dose, protected the structure and the function of the retina in three animal models that each mimic aspects of diabetic retinopathy in humans. In this pilot study, we investigated whether one year of chronic oral glibenclamide, in a non-hypoglycemic regimen (Amglidia®, 0.4 mg/kg, Ammtek/Nordic Pharma, 5 d/week), could alleviate the retinopathy that develops in the Goto-Kakizaki (GK) rat. In vivo, retinal function was assessed by electroretinography (ERG), retinal thickness by optical coherence tomography (OCT) and retinal perfusion by fluorescein and indocyanin green angiographies. The integrity of the retinal pigment epithelium (RPE) that constitutes the outer retinal barrier was evaluated by quantitative analysis of the RPE morphology on flat-mounted fundus ex vivo. Oral glibenclamide did not significantly reduce the Hb1Ac levels but still improved retinal function, as witnessed by the reduction in scotopic implicit times, limited diabetes-induced neuroretinal thickening and the extension of ischemic areas, and it improved the capillary coverage. These results indicate that low doses of oral glibenclamide could still be beneficial for the prevention of type 2 diabetic retinopathy. Whether the retinas ofpatients treated specifically with glibenclamideare less at risk of developing diabetic complications remains to be demonstrated.
Collapse
Affiliation(s)
- Marianne Berdugo
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Kimberley Delaunay
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Cécile Lebon
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Marie-Christine Naud
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Lolita Radet
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Léa Zennaro
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Emilie Picard
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Alejandra Daruich
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
- Department of Ophthalmology, AP-HP Hospital University Necker-Sick Children, F-75015 Paris, France
| | - Jacques Beltrand
- Department of Paediatric Endocrinology, Gynecology and Diabetology, AP-HP Hospital University Necker-Sick Children, F-75015 Paris, France; (J.B.); (M.P.)
- Faculté de Santé, University of Paris, F-75006 Paris, France
- Institut Cochin, InsermU1016, F-75005 Paris, France
| | - Elsa Kermorvant-Duchemin
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
- Neonatal and Intensive Care Unit, AP-HP Hospital University Necker-Sick Children, F-75015 Paris, France
| | - Michel Polak
- Department of Paediatric Endocrinology, Gynecology and Diabetology, AP-HP Hospital University Necker-Sick Children, F-75015 Paris, France; (J.B.); (M.P.)
- Faculté de Santé, University of Paris, F-75006 Paris, France
- Institut Cochin, InsermU1016, F-75005 Paris, France
- Institute Imagine, InsermU1163, F-75015 Paris, France
| | - Patricia Crisanti
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
| | - Francine F. Behar-Cohen
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne University and Universityof Paris, Inserm UMRS 1138, F-75006 Paris, France; (M.B.); (K.D.); (C.L.); (M.-C.N.); (L.R.); (L.Z.); (E.P.); (A.D.); (E.K.-D.); (P.C.)
- Ophthalmology, AP-HP Hospital Cochin, F-75005 Paris, France
- Correspondence:
| |
Collapse
|
8
|
The Hormetic Effect of Metformin: "Less Is More"? Int J Mol Sci 2021; 22:ijms22126297. [PMID: 34208371 PMCID: PMC8231127 DOI: 10.3390/ijms22126297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.
Collapse
|
9
|
Jadeja RN, Martin PM. Oxidative Stress and Inflammation in Retinal Degeneration. Antioxidants (Basel) 2021; 10:antiox10050790. [PMID: 34067655 PMCID: PMC8156590 DOI: 10.3390/antiox10050790] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +70-6721-4220; Fax: +70-6721-6608
| |
Collapse
|