1
|
Alipour S, Wojciechowska N, Bujarska-Borkowska B, Kalemba EM. Distinct redox state regulation in the seedling performance of Norway maple and sycamore. JOURNAL OF PLANT RESEARCH 2023; 136:83-96. [PMID: 36385674 PMCID: PMC9831958 DOI: 10.1007/s10265-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | | | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland.
| |
Collapse
|
2
|
Xue B, Li H, Liu S, Feng Q, Xu Y, Deng R, Chen S, Wang J, Li X, Wan M, Tang S, Zhu H. The redox cycling of STAT2 maintains innate immune homeostasis. Cell Rep 2022; 40:111215. [PMID: 35977519 DOI: 10.1016/j.celrep.2022.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Interferons (IFNs) are essential in antiviral defense, antitumor effects, and immunoregulatory activities. Although methionine oxidation is associated with various physiological and pathophysiological processes in plants, animals, and humans, its role in immunity remains unclear. We find that the redox cycling of signal transducer and activator of transcription 2 (STAT2) is an intrinsic cellular biological process, and that impairment of the redox status contributes to STAT2 methionine oxidation, inhibiting its activation. IFN protects STAT2 from methionine oxidation through the recruitment of methionine sulfoxide reductase MSRB2, whose enzymatic activity is enhanced by N-acetyltransferase 9 (NAT9), a chaperone of STAT2 defined in this study, upon IFN treatment. Consequently, loss of Nat9 renders mice more susceptible to viral infection. Our study highlights the key function of methionine oxidation in immunity, which provides evidence for the decline of immune function by aging and may provide insights into the clinical applications of IFN in immune-related diseases.
Collapse
Affiliation(s)
- Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Qing Feng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Jingjing Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China; Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
3
|
Peng L, Huang X, Qi M, Pritchard HW, Xue H. Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. FRONTIERS IN PLANT SCIENCE 2022; 13:1029997. [PMID: 36420023 PMCID: PMC9677110 DOI: 10.3389/fpls.2022.1029997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 05/13/2023]
Abstract
Germplasm conservation strongly depends on the desiccation tolerance (DT) of seeds. Xerophytic seeds have strong desiccation resistance, which makes them excellent models to study DT. Although some experimental strategies have been applied previously, most methods are difficult to apply to xerophytic seeds. In this review, we attempted to synthesize current strategies for the study of seed DT and provide an in-depth look at Caragana korshinskii as an example. First, we analyze congenital advantages of xerophytes in the study of seed DT. Second, we summarize several strategies used to study DT and illustrate a suitable strategy for xerophytic species. Then, based on our previous studies work with C. korshinskii, a feasible technical strategy for DT re-establishment is provided and we provide illustrate some special molecular mechanisms seen in xerophytic seeds. Finally, several steps to unveil the DT mechanism of xerophytic seeds are suggested, and three scientific questions that the field should consider are listed. We hope to optimize and utilize this strategy for more xerophytic species to more systematically decipher the physiological and molecular processes of seed DT and provide more candidate genes for molecular breeding.
Collapse
Affiliation(s)
- Long Peng
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Huang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hugh W. Pritchard
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
- Royal Botanic Gardens, Kew, Wakehurst, West Sussex, United Kingdom
| | - Hua Xue
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Hua Xue,
| |
Collapse
|
4
|
NAD(P)H Drives the Ascorbate-Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons. Antioxidants (Basel) 2021; 10:antiox10122021. [PMID: 34943124 PMCID: PMC8698623 DOI: 10.3390/antiox10122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
European beech is an important component of European lowland forests in terms of ecology, and produces irregular seeds categorized as intermediate due to their limited longevity. Removal of the excess of reactive oxygen species is crucial for redox homeostasis in growing plant tissues. Hydrogen peroxide (H2O2) is detoxified via the plant-specific ascorbate-glutathione cycle, and enzymatically, mainly by catalase (CAT). The reduced and oxidized (redox) forms of ascorbate (AsA, DHA) and glutathione (GSH, GSSG) decreased during maturation as the content of redox forms of nicotinamide adenine dinucleotide (NADH, NAD+) phosphate (NADPH, NADP+), cofactors of ascorbate–glutathione enzymes, declined and limited this cycle. The degree of oxidation of glutathione peaked at approximately 80%, at the exact time when the NADP content was the lowest and the NADPH/NADP+ ratio reached the highest values. The glutathione pool was reflected in changes in the NADP pool, both in embryonic axes (R2 = 0.61) and in cotyledons (R2 = 0.98). A large excess of NADPH was reported in embryonic axes, whereas cotyledons displayed more unified levels of NADP redox forms. As a result, anabolic redox charge and reducing power were higher in embryonic axes. CAT was recognized as two proteins, and the abundance of the 55 kDa protein was correlated with all redox forms of ascorbate, glutathione, NAD, and NADP, whereas the 37 kDa protein was oppositely regulated in embryonic axes and cotyledons. Here, we discuss the role of NAD(P) in the regulation of the ascorbate–glutathione cycle, catalase, and seed longevity concerning a putative role of NAD(P)H as a redox biomarker involved in predefining seed quality, because NAD(P)H-derived redox homeostasis was found to be better controlled in embryonic axes than cotyledons.
Collapse
|
5
|
Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method. BMC Genomics 2021; 22:249. [PMID: 33827431 PMCID: PMC8028694 DOI: 10.1186/s12864-021-07548-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cucumber (Cucumis sativus L.) is cultivated worldwide, and it is essential to produce enough high-quality seeds to meet demand. Pre-harvest sprouting (PHS) in cucumber is a critical problem and causes serious damage to seed production and quality. Nevertheless, the genetic basis and molecular mechanisms underlying cucumber PHS remain unclear. QTL-seq is an efficient approach for rapid quantitative trait loci (QTL) identification that simultaneously takes advantage of bulked-segregant analysis (BSA) and whole-genome resequencing. In the present research, QTL-seq analysis was performed to identify QTLs associated with PHS in cucumber using an F2 segregating population. Results Two QTLs that spanned 7.3 Mb on Chromosome 4 and 0.15 Mb on Chromosome 5 were identified by QTL-seq and named qPHS4.1 and qPHS5.1, respectively. Subsequently, SNP and InDel markers selected from the candidate regions were used to refine the intervals using the extended F2 populations grown in the 2016 and 2017 seasons. Finally, qPHS4.1 was narrowed to 0.53 Mb on chromosome 4 flanked by the markers SNP-16 and SNP-24 and was found to explain 19–22% of the phenotypic variation in cucumber PHS. These results reveal that qPHS4.1 is a major-effect QTL associated with PHS in cucumber. Based on gene annotations and qRT-PCR expression analyses, Csa4G622760 and Csa4G622800 were proposed as the candidate genes. Conclusions These results provide novel insights into the genetic mechanism controlling PHS in cucumber and highlight the potential for marker-assisted selection of PHS resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07548-8.
Collapse
|
6
|
Methionine Sulfoxide Reductase B Regulates the Activity of Ascorbate Peroxidase of Banana Fruit. Antioxidants (Basel) 2021; 10:antiox10020310. [PMID: 33670705 PMCID: PMC7922979 DOI: 10.3390/antiox10020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.
Collapse
|
7
|
Wojciechowska N, Alipour S, Stolarska E, Bilska K, Rey P, Kalemba EM. Involvement of the MetO/Msr System in Two Acer Species That Display Contrasting Characteristics during Germination. Int J Mol Sci 2020; 21:E9197. [PMID: 33276642 PMCID: PMC7730483 DOI: 10.3390/ijms21239197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed-substantially higher in sycamore-hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•-) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•- and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS-MetO-Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Pascal Rey
- Plant Protective Proteins (PPV) Team, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), Aix Marseille University (AMU), 13108 Saint Paul-Lez-Durance, France;
| | - Ewa M. Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| |
Collapse
|