1
|
Baek MW, Lee JH, Yeo CE, Tae SH, Chang SM, Choi HR, Park DS, Tilahun S, Jeong CS. Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color. Antioxidants (Basel) 2024; 13:785. [PMID: 39061854 PMCID: PMC11274346 DOI: 10.3390/antiox13070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study was conducted to characterize different colored lines of cherry tomatoes and derive information regarding their metabolite accumulation. Different colored cherry tomato cultivars, namely 'Jocheong', 'BN Satnolang', 'Gold Chance', 'Black Q', and 'Snacktom', were assessed for their firmness, taste characteristics, and nutritional metabolites at the commercial ripening stage. The cultivars demonstrated firmness to withstand impacts during harvesting and postharvest operations. The significant variations in the Brix to acid ratio (BAR) and the contents of phenylalanine, glutamic acid, and aspartic acid highlight the distinct taste characteristics among the cultivars, and the nutritional metabolites are associated with the color of the cultivars. The cultivar choices would be the black-colored 'Black Q' for chlorophylls, β-carotene, total flavonoids, and anthocyanins; the red-colored 'Snacktom' for lycopene; the orange-colored 'Gold Chance' for total phenolics; and the green-colored 'Jocheong' for chlorophylls, vitamin C, GABA, glutamic acid, essential amino acids, and total free amino acids. The antioxidant capacity varied among the cultivars, with 'Gold Chance' consistently exhibiting the highest activity across the four assays, followed by 'Snacktom'. This study emphasizes the importance of screening cultivars to support breeding programs for improving the nutritional content and encourages the inclusion of a diverse mix of different colored cherry tomatoes in packaging to obtain the cumulative or synergistic effects of secondary metabolites.
Collapse
Affiliation(s)
- Min Woo Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.W.B.); (J.H.L.); (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
| | - Jong Hwan Lee
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.W.B.); (J.H.L.); (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
| | - Chang Eun Yeo
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
- Sunmin F&B Co., Ltd., Chuncheon 24341, Republic of Korea
| | - Su Ho Tae
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.W.B.); (J.H.L.); (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
| | - Se Min Chang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.W.B.); (J.H.L.); (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
| | - Han Ryul Choi
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Do Su Park
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Shimeles Tilahun
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma 378, Ethiopia
| | - Cheon Soon Jeong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.W.B.); (J.H.L.); (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; (C.E.Y.); (D.S.P.)
| |
Collapse
|
2
|
Tilahun S, Baek MW, An KS, Choi HR, Lee JH, Hong JS, Jeong CS. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1236055. [PMID: 37780508 PMCID: PMC10536316 DOI: 10.3389/fpls.2023.1236055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Growing microgreens on trays without substrate in a vertical multilayered growing unit offers several advantages over traditional agriculture methods. This study investigated the yield performance and nutritional quality of five selections of radish microgreens grown in sprouting trays, without a substrate using only water, in an indoor multilayer cultivation system using artificial light. Various parameters were measured, including fresh weight, dry matter, chlorophyll, minerals, amino acids, phenolics, flavonoids, anthocyanins, vitamin C, glucosinolates, and antioxidant activity with four different in vitro assays. After ten days, the biomass had increased by 6-10 times, and the dry matter varied from 4.75-7.65%. The highest yield was obtained from 'Asia red', while the lowest was from 'Koregon red'. However, 'Koregon red' and 'Asia red' had the highest dry matter. 'Asia red' was found to have the highest levels of both Chls and vitamin C compared to the other cultivars, while 'Koregon red' exhibited the highest levels of total phenolics and flavonoids. Although variations in the levels of individual glucosinolates were observed, there were no significant differences in the total content of glucosinolates among the five cultivars. 'Asia purple' had the highest anthocyanin content, while 'Asia green 2' had the lowest. The K, Mg, and Na concentrations were significantly highest in 'Asia green 2', and the highest Ca was recorded in 'Asia purple'. Overall, 'Asia purple' and 'Koregon red' were the best cultivars in terms of nutritional quality among the tested radish microgreens. These cultivars exhibited high levels of dry weight, total phenolics, flavonoids, anthocyanins, essential and total amino acids, and antioxidant activities. Moreover, the implementation of this vertical cultivation method for microgreens, which relies solely on water and seeds known for their tall shoots during the sprouting could hold promise as a sustainable approach. This method can effectively be utilized for cultivar screening and fulfilling the nutritional and functional needs of the population while minimizing the environmental impacts associated with traditional agriculture practices.
Collapse
Affiliation(s)
- Shimeles Tilahun
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Min Woo Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Seok An
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon National University Eco-friendly Agricultural Product Safety Center, Chuncheon, Republic of Korea
| | - Han Ryul Choi
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Jong Hwan Lee
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheon Soon Jeong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Men X, Han X, Lee SJ, Park KT, Han JK, Choi SI, Lee OH. Anti-adipogenic Effects of Sulforaphane-rich Ingredient with Broccoli Sprout and Mustard Seed in 3T3-L1 Preadipocytes. PLANTA MEDICA 2023; 89:526-538. [PMID: 35577064 DOI: 10.1055/a-1853-7101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucoraphanin (GRA) is a precursor of sulforaphane (SFN), which can be synthesized by the enzyme myrosinase. In this study, we developed and validated HPLC analytical methods for the determination of GRA and SFN in mustard seed powder (MSP), broccoli sprout powder (BSP), and the MSP-BSP mixture powder (MBP), and evaluated their anti-adipogenic effects in 3T3-L1 adipocytes. We found that the analysis methods were suitable for the determination of GRA and SFN in MSP, BSP, and MBP. The content of GRA in BSP was 131.11 ± 1.84 µmol/g, and the content of SFN in MBP was 162.29 ± 1.24 µmol/g. In addition, BSP and MBP effectively decreased lipid accumulation content without any cytotoxicity. Both BSP and MBP significantly inhibited the expression of adipogenic proteins and increased the expression of proteins related to lipolysis and lipid metabolism. BSP and MBP inhibited the expression of adipocyte protein 2 (aP2), CCAAT/enhancer-binding protein-α (C/EBP-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) in 3T3-L1 adipocytes, and inhibited the expression of fatty acid synthase (FAS) through AMP-activated protein kinase (AMPK). Meanwhile, BSP and MBP also increased the expression of the lipolysis-related proteins, uncoupling protein-1 (UCP-1) and carnitine palmitoyltransferase-1 (CPT-1). Moreover, MBP exerted anti-adipogenic to a greater extent than BSP in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
4
|
Song SY, Ahn MS, Mekapogu M, Jung JA, Song HY, Lim SH, Jin JS, Kwon OK. Analysis of Floral Scent and Volatile Profiles of Different Aster Species by E-nose and HS-SPME-GC-MS. Metabolites 2023; 13:metabo13040503. [PMID: 37110161 PMCID: PMC10141722 DOI: 10.3390/metabo13040503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Aster species are known to be a rich source of bioactive chemical compositions and are popularly known for their medicinal properties. To investigate the relationship between the nine species of Aster, the floral fragrance and volatile profile patterns were characterized using E-nose and HS-SPME-GC-MS. Initial optimization for fragrance analysis was performed with Aster yomena using E-nose by evaluating the scent patterns in different flowering stages. Aster yomena exhibited varied scent patterns in each flowering stage, with the highest relative aroma intensity (RAI) in the full flowering stage. PCA analysis to compare and analyze the scent characteristics of nine Aster species, showed a species-specific classification. HS-SPME-GC-MS analysis of flowers from nine Aster species revealed 52 volatile compounds including β-myrcene, α-phellandrene, D-limonene, trans-β-ocimene, caryophyllene, and β-cadinene. The terpenoid compounds accounted for the largest proportion. Among the nine Aster species flowers, Aster koraiensis had sesquiterpenes as the major component, and the remaining eight varieties had monoterpenes in abundance. These results could distinguish the species according to the scent patterns and volatile components of the nine Aster species. Additionally, flower extracts from the Aster species’ plants exhibited radical scavenging antioxidant activity. Among them, it was confirmed that Aster pseudoglehnii, Aster maackii, and Aster arenarius had high antioxidant activity. In conclusion, the results of this study provide fundamental data of the volatile compound properties and antioxidant activity of Aster species, offering basic information of valuable natural sources that can be utilized in the pharmaceutical, perfume, and cosmetic industries.
Collapse
|
5
|
Metabolic Fate of Orally Ingested Proanthocyanidins through the Digestive Tract. Antioxidants (Basel) 2022; 12:antiox12010017. [PMID: 36670878 PMCID: PMC9854439 DOI: 10.3390/antiox12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Proanthocyanidins (PACs), which are oligomers or polymers of flavan-3ols with potent antioxidative activity, are well known to exert a variety of beneficial health effects. Nonetheless, their bioaccessibility and bioavailability have been poorly assessed. In this review, we focused on the metabolic fate of PACs through the digestive tract. When oligomeric and polymeric PACs are orally ingested, a large portion of the PACs reach the colon, where a small portion is subjected to microbial degradation to phenolic acids and valerolactones, despite the possibility that slight depolymerization of PACs occurs in the stomach and small intestine. Valerolactones, as microbiota-generated catabolites of PACs, may contribute to some of the health benefits of orally ingested PACs. The remaining portion interacts with gut microbiota, resulting in improved microbial diversity and, thereby, contributing to improved health. For instance, an increased amount of beneficial gut bacteria (e.g., Akkermansia muciniphila and butyrate-producing bacteria) could ameliorate host metabolic functions, and a lowered ratio of Firmicutes/Bacteroidetes at the phylum level could mitigate obesity-related metabolic disorders.
Collapse
|
6
|
Changes in metabolites and antioxidant activities of green ‘Hayward’ and gold ‘Haegeum’ kiwifruits during ripening with ethylene treatment. Food Chem 2022; 384:132490. [DOI: 10.1016/j.foodchem.2022.132490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
7
|
Astragalin and Isoquercitrin Isolated from Aster scaber Suppress LPS-Induced Neuroinflammatory Responses in Microglia and Mice. Foods 2022; 11:foods11101505. [PMID: 35627075 PMCID: PMC9141956 DOI: 10.3390/foods11101505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The current study investigated the anti-neuroinflammatory effects and mechanisms of astragalin (Ast) and isoquercitrin (Que) isolated from chamchwi (Aster scaber Thunb.) in the lipopolysaccharide (LPS)-activated microglia and hippocampus of LPS induced mice. LPS induced increased cytotoxicity, nitric oxide (NO) production, antioxidant activity, reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) expression, the release of pro-inflammatory cytokines, protein kinase B phosphorylation, and mitogen-activated protein kinases (MAPK) phosphorylation in LPS-treated microglial cells. Intraperitoneal injection of LPS also induced neuroinflammatory effects in the murine hippocampus. Ast and Que significantly reduced LPS-induced production of NO, iNOS, and pro-inflammatory cytokines in the microglia and hippocampus of mice. Therefore, anti-inflammatory effects on MAPK signaling pathways mediate microglial cell and hippocampus inflammation. In LPS-activated microglia and hippocampus of LPS-induced mice, Ast or Que inhibited MAPK kinase phosphorylation by extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 signaling proteins. Ast and Que inhibited LPS-induced ROS generation in microglia and increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging. In addition, LPS treatment increased the heme oxygenase-1 level, which was further elevated after Ast or Que treatments. Ast and Que exert anti-neuroinflammatory activity by down-regulation of MAPKs signaling pathways in LPS-activated microglia and hippocampus of mice.
Collapse
|
8
|
Tilahun S, Jeong MJ, Choi HR, Baek MW, Hong JS, Jeong CS. Prestorage High CO2 and 1-MCP Treatment Reduce Chilling Injury, Prolong Storability, and Maintain Sensory Qualities and Antioxidant Activities of “Madoka” Peach Fruit. Front Nutr 2022; 9:903352. [PMID: 35662956 PMCID: PMC9159361 DOI: 10.3389/fnut.2022.903352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Cold storage is widely used to prolong the storability of peach fruit. However, prolonged storage at low temperatures results in chilling injury (CI) in some susceptible peach cultivars during or after cold storage. Prestorage high CO2 and 1-methylcyclopropene (1-MCP) treatments are among the methods reported to alleviate CI and maintain the firmness of peach fruit. Hence, this study investigated CI, ripening-related physicochemical parameters, sensory qualities, total phenolics and flavonoids, and antioxidant activities of “Madoka” peach fruit to observe the effectiveness of prestorage treatment with high CO2 and 1-MCP during the storage at 0 and 5°C. Based on the CI index, control fruits were acceptable for marketing up to 20 and 16 days of storage at 0 and 5°C, respectively, while the treated fruits could be marketable up to 28 days of storage. The results of firmness and firmness-related parameters [pectin content and polygalacturonase (PG) activity] also revealed that both high CO2 and 1-MCP treatments were effective in delaying the ripening process of Madoka peach, and the storage at 0°C showed better results than at 5°C. However, based on the overall sensory evaluation results, the treated and control fruits were acceptable for marketing up to 20 and 12 days of storage, respectively, in both storage conditions. After deciding on fruit marketability based on the combined objective postharvest quality parameters and subjective sensory qualities, we analyzed the changes in total phenolics, flavonoids, and antioxidant activities at harvest, on the 12 and 20th days of cold storage. Storage of Madoka peach at 0°C maintained total phenolics, flavonoids, and antioxidant activities regardless of prestorage treatment with high CO2 and 1-MCP. In summary, storing Madoka peach fruit at 0°C after treating it with 30% CO2 for 6 h or 0.5 μl L–1 1-MCP for 24 h reduces CI, prolongs storability, and maintains sensory quality and antioxidant properties.
Collapse
Affiliation(s)
- Shimeles Tilahun
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, South Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Min Jae Jeong
- Department of Horticulture, Kangwon National University, Chuncheon, South Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Han Ryul Choi
- Department of Horticulture, Kangwon National University, Chuncheon, South Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Min Woo Baek
- Department of Horticulture, Kangwon National University, Chuncheon, South Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
| | - Jin Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Jin Sung Hong,
| | - Cheon Soon Jeong
- Department of Horticulture, Kangwon National University, Chuncheon, South Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, South Korea
- Cheon Soon Jeong,
| |
Collapse
|
9
|
Lv X, Mu J, Wang W, Liu Y, Lu X, Sun J, Wang J, Ma Q. Effects and mechanism of natural phenolic acids/fatty acids on copigmentation of purple sweet potato anthocyanins. Curr Res Food Sci 2022; 5:1243-1250. [PMID: 36032044 PMCID: PMC9404274 DOI: 10.1016/j.crfs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022] Open
Abstract
Anthocyanins are attractive alternatives to colorants; however, their low color stability hinders practical application. Copigmentation can enhance both the color intensity and color stability of complexes. Herein, we report an investigation of copigmentation reactions between purple sweet potato anthocyanins (PSA1) and phenolic acids (tannic, ferulic, and caffeic acids) or fatty acids (tartaric and malic acids) at pH 3.5. The effects of the mole ratios of the copigment and the reaction temperature were examined. In addition, quantum mechanical computations were performed to investigate molecular interactions. The optimum PSA:copigment molar ratio was found to be 1:100. The strongest bathochromic and hyperchromic effects were observed for copigmentation with tannic acid (Tan), which might be attributable to the fact that its HOMO-LUMO energy gap was the smallest among the investigated copigments, and because it has a greater number of phenolic aromatic and groups to form more van der Waals and hydrogen bond interactions. However, the formation of the PSA-caffeic acid (Caf) complex was accompanied by the greatest drop in enthalpy (−33.18 kJ/mol) and entropy (−74.55 kJ/mol), and this was the most stable complex at 90 °C. Quantum mechanical calculations indicated that hydrogen bonds and van der Waals force interactions contributed to the color intensification effect of copigmentation. These findings represent an advancement in our understanding of the properties of PSA, expanding the application scope of this natural product. Anthocyanin-phenolic/fatty acid copigmentation interactions were investigated. Copigment HOMO-LUMO gaps served as a copigmentation capability guide. Color changes in the presence of the acids were associated with structural effects. Copigmentation was mainly driven by hydrogen bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Xiaorui Lv
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
- Corresponding author.
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
- Corresponding author.
| |
Collapse
|