1
|
Roodnat AW, Callaghan B, Doyle C, Vallabh NA, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS One 2024; 19:e0307227. [PMID: 38990974 PMCID: PMC11239048 DOI: 10.1371/journal.pone.0307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neeru A. Vallabh
- Department of Eye and Vision Science, Insitute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
2
|
Wu N, Shi W, Sun X. Association of Long-Term Exposure to Ambient Air Pollution With the Risk of Acute Primary Angle Closure. Transl Vis Sci Technol 2024; 13:7. [PMID: 38470319 PMCID: PMC10941992 DOI: 10.1167/tvst.13.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate the association between long-term exposure to ambient air pollutants and the risk of acute primary angle closure (APAC). Methods Two hundred eighty-one (281) patients with APAC and 730 age- and sex-matched controls hospitalized between January 2017 and December 2019 were enrolled in this retrospective case-control study. Residential exposure to ambient air pollutants, including fine particulate matter (PM2.5), inhalable particulate (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone were estimated by satellite-models or ground measurement. Multivariate regression analyses explored the association between annual air pollutants exposure and the risk of APAC. Results Of the 1011 participants (31.1% were male subjects), the average age was 64.0 years. Long-term exposure to PM2.5, PM10, and SO2 were significantly associated with an increased risk of APAC. The adjusted odds ratios (aORs) for each interquartile range (IQR) increment of PM2.5, PM10, and SO2 were 1.28 (95% confidence interval [CI] = 1.06-1.57), 1.26 (95% CI = 1.06-1.50), and 1.30 (95% CI = 1.04-1.62) separately, after controlling for confounders. Robust associations were observed for a longer lag 2-year exposure. Conclusions Long-term exposure to PM2.5, PM10, and SO2 was associated with an increased risk of APAC in a Chinese population. Our findings provide epidemiological implications on the adverse effects of air pollution on ocular diseases. Translational Relevance Long-term exposure to ambient air pollutants increased the risk of APAC.
Collapse
Affiliation(s)
- Na Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Sex differences in the association between systemic oxidative stress status and optic nerve head blood flow in normal-tension glaucoma. PLoS One 2023; 18:e0282047. [PMID: 36827337 PMCID: PMC9955941 DOI: 10.1371/journal.pone.0282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE To investigate the association of systemic oxidative stress markers and optic nerve head (ONH) blood flow in normal-tension glaucoma (NTG) patients, as well as sex differences in this association. METHODS This was a cross-sectional study of 235 eyes with NTG of 134 patients (56 male, 78 female; mean age, 60.9±14.1 years). Laser speckle flowgraphy (LSFG) was used to measure ONH blood flow (mean blur rate in the tissue area of the ONH; MBR-T) and LSFG pulse-waveform parameters, including flow acceleration index in the tissue area of the ONH (FAI-T). Oxidative stress markers, diacron-reactive oxygen metabolites (d-ROMs), and biological antioxidant potential (BAP) were measured with a free radical elective evaluator. Spearman's rank correlation test and a multivariate linear mixed-effect model were used to investigate factors associated with ONH blood flow. RESULTS MBR-T was significantly correlated with age (rs = -0.28, p < 0.001), mean arterial pressure (rs = -0.20, p = 0.002), intraocular pressure (rs = 0.24, p < 0.001), peripapillary retinal nerve fiber layer thickness (rs = 0.62, p < 0.001), and disc area (rs = -0.26, p < 0.001), but not with serum d-ROM level. Separate analyses of the subjects divided by sex showed that BAP was positively correlated to MBR-T (rs = 0.21, p = 0.036) and FAI-T (rs = 0.36, p < 0.001) only in male subjects. Similarly, BAP was significantly associated with MBR-T (β = 0.25, p = 0.026) and FAI-T (β = 0.37, p < 0.001) in male subjects in a multivariate linear mixed-effect model. CONCLUSION A lower serum antioxidant level, as indicated by BAP, was associated with reduced ONH blood flow only in male NTG patients. Our findings suggest that there are sex differences in the involvement of oxidative stress in the pathogenesis of reduced ocular blood flow in NTG.
Collapse
|
4
|
Callaghan B, Vallabh NA, Willoughby CE. Deuterated polyunsaturated fatty acids provided protection against oxidative stress in ocular fibroblasts derived from glaucoma patients. Mech Ageing Dev 2023; 211:111778. [PMID: 36716826 DOI: 10.1016/j.mad.2023.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Glaucoma is a complex neurodegenerative disease of the optic nerve that leads to irreversible sight loss. Lowering intraocular pressure (IOP) medically or surgically represents the mainstay of treatment but despite adequate treatment optic nerve function can continue to deteriorate leading to blindness. There is significant clinical and experimental evidence that oxidative stress is involved in the pathogenesis of glaucoma. Decreasing the formation of lipid peroxidation products or scavenging them chemically could be beneficial in limiting the deleterious effects of oxidative stress in glaucoma. A solution to control the susceptibility of PUFAs to noxious lipid peroxidation reactions is by regioselective deuteration. Deuterium incorporated into PUFAs at bis-allylic positions (D-PUFAs) inhibits the rate-limiting step of lipid peroxidation. In this study, we have shown that Tenon's ocular fibroblasts from glaucoma patients have significantly increased basal oxidative stress compared to non-glaucomatous control patients. Furthermore, we have shown that deuterated polyunsaturated fatty acids (D-PUFAs) provide an enhanced rescue of menadione induced lipid peroxidation in both non-glaucomatous and glaucomatous Tenon's ocular fibroblasts using malondialdehyde (MDA) levels as a marker. Our study suggests that D-PUFAs may provide a potentially safe and effective method to reduce cytotoxic oxidative stress in glaucoma.
Collapse
Affiliation(s)
- Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Colin E Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, United Kingdom; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| |
Collapse
|
5
|
Tanito M, Takayanagi Y, Ishida A, Ichioka S, Takai Y, Kaidzu S. Linear association between aging and decreased blood thiol antioxidant activity in patients with cataract. J Clin Biochem Nutr 2023; 72:54-60. [PMID: 36777073 PMCID: PMC9899924 DOI: 10.3164/jcbn.22-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/03/2022] [Indexed: 11/07/2022] Open
Abstract
We comprehensively assessed the roles of systemic redox markers by including both prooxidant and antioxidant markers in 121 Japanese subjects (mean ± SD age, 70 ± 11 years; 38 men) with no ocular pathology except age-related cataract. Serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured using the diacron reactive oxygen metabolite (dROM), biologic antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free-radical analyzer. Univariate analyses suggested that older age, higher pulse rate, worse best-corrected visual acuity (BCVA), higher intraocular pressure, and higher cataract grade were associated with a lower SH level. Scatterplots revealed virtually linear associations between age and the SH level (estimate, -4.4 μM/year). Multivariate analyses suggested that older age, higher systolic blood pressure, and worse BCVA were associated with a lower SH level. Neither the univariate nor multivariate analyses, except between female sex and higher dROM level, were associated with the dROM or BAP level. A lower serum SH level was the driver of aging itself and age-related decline in VA due to cataract. The serum SH level may be an excellent predictor of aging status in each subject.
Collapse
Affiliation(s)
- Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,To whom correspondence should be addressed. E-mail:
| | - Yuji Takayanagi
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Naka-ku Sumiyoshi, Hamamatsu, Shizuoka 430-8558, Japan
| | - Akiko Ishida
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Sho Ichioka
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Yasuyuki Takai
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan,Department of Ophthalmology, Masuda Red Cross Hospital, I103-1 Otoyoshi, Masuda, Shimane 698-8501, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
6
|
Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: Relevance to Pseudoexfoliation Glaucoma. Biomolecules 2022; 12:1693. [PMID: 36421707 PMCID: PMC9687758 DOI: 10.3390/biom12111693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 08/11/2023] Open
Abstract
Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-β pathway by TGF-β1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-β1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-β1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-β1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Chelsey Doyle
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Megan Henry
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - David A. Simpson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - Sarah D. Atkinson
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| |
Collapse
|
7
|
Kadoh Y, Takayanagi Y, Sasaki J, Tanito M. Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma. Antioxidants (Basel) 2022; 11:antiox11061138. [PMID: 35740035 PMCID: PMC9220224 DOI: 10.3390/antiox11061138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Carotenoids have antioxidant properties, and the accumulation of advanced glycation end products (AGEs) is associated with reactive oxygen species production; they have attracted attention as factors predictive of the onset and progression in glaucoma. Fingertip measurement is applicable for carotenoids and AGEs due to its noninvasiveness and simplicity. The study included 663 eyes of 663 Japanese subjects (357 males, 306 females). The mean age was 69.9 years with a standard deviation of 11.0. The study population comprised participants with primary open-angle glaucoma (PG) (n = 358), exfoliation glaucoma (EG) (n = 168), and controls (n = 137). Multivariate models suggested that lower skin carotenoid (SC) levels were associated with male gender (standard β = −0.14), AGE scores (−0.24), and a history of intraocular surgery (−0.22). Higher SC levels were associated with higher vegetable intake scores (0.21 for score 3) and diabetes (0.10). However, no association was seen between SCs and glaucoma type. AGEs levels were negatively associated with carotenoid scores (−0.25), PG (−0.15), and smoking habits (−0.26) and positively correlated with EG (0.14). SCs and AGEs were negatively correlated in the single regression analysis (r = −0.20, p < 0.0001). In conclusion, higher levels of AGEs may be candidates for systemic biomarkers of glaucoma associated with the exfoliation syndrome. SC levels can reflect self-reported daily vegetable intake.
Collapse
|
8
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
9
|
Umeno A, Yoshida Y, Kaidzu S, Tanito M. Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure. Molecules 2022; 27:molecules27072215. [PMID: 35408614 PMCID: PMC9000355 DOI: 10.3390/molecules27072215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
We previously proposed the total assessment of hydroxylinoleates (HODEs) by LC-MS/MS after saponification and reduction of the biologic samples as biomarkers to investigate pathogenesis, disease progression, and prognosis. In this study, HODE levels were estimated in aqueous humor (AH) samples from 63 eyes (41 Japanese subjects; 15 men; mean age, 77.3 ± 6.8 years) with primary open-angle glaucoma (POAG) or cataracts. The correlations between intraocular HODE levels and background parameters, including intraocular pressure (IOP), were analyzed to assess the possible involvement of oxidative stress in glaucoma pathology. Univariate analyses showed that linoleic acid (LA) (p = 0.034) and arachidonic acid (AA) (p = 0.0041) levels were associated negatively with age; 13-(Z,E)-HODE (p = 0.018) and 13-(E,E)-HODE (p = 0.021) were associated positively with IOP; 9-(Z,E)-HODE (p = 0.039), 13-(Z,E)-HODE (p = 0.021), totally assessed-HODE (t-HODE, p = 0.023), LA (p = 0.0080), and AA (p = 0.0051) were higher in eyes with glaucoma than cataract. No gender differences were seen. A mixed-effect regression model showed that higher 13-(Z,E)-HODE (p = 0.0040) and higher t-HODE (p = 0.040) were associated with glaucoma rather than cataracts; and higher levels of 13-(Z,E)-HODE/LA (p = 0.043), 13-(E,E)-HODE/LA (p = 0.042), 13-(Z,E)-HODE (p = 0.0054), and 13-(E,E)-HODE (p = 0.027) were associated with higher IOP. Linoleate-derived oxidation products were quantified successfully in AH samples from patients with glaucoma and cataracts. A free radical oxidation mechanism can be associated with IOP elevation, while enzymatic oxidation may be involved, specifically, in the pathogenesis of POAG.
Collapse
Affiliation(s)
- Aya Umeno
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (A.U.); (S.K.)
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo 100-0004, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu 761-0301, Japan
| | - Yasukazu Yoshida
- Head Office Laboratory, LG Japan Lab Inc., Kanagawa 220-0011, Japan;
| | - Sachiko Kaidzu
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (A.U.); (S.K.)
| | - Masaki Tanito
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (A.U.); (S.K.)
- Correspondence: ; Tel.: +81-853-20-2284
| |
Collapse
|
10
|
Clinical Significance of Albumin- and Bilirubin-Based Biomarkers in Glaucoma: A Retrospective Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063651. [PMID: 35281459 PMCID: PMC8916859 DOI: 10.1155/2022/8063651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is the second leading cause of global blindness. The etiology of glaucoma is complicated. In addition to elevated intraocular pressure (IOP), several other mechanisms have been implicated in pathogenesis, such as oxidative stress and systemic inflammation. Serum albumin (ALB) and bilirubin (BIL) have been reported to have potent antioxidant properties and contribute to maintain redox homeostasis in various diseases. However, associations between these parameters and glaucoma remain mostly unknown. Here, we conducted a retrospective case-control study, revealing that serum ALB, total BIL (TBIL), and indirect BIL (IBIL) levels were markedly lower in glaucoma patients than those in healthy controls. Furthermore, the neutrophil-to-ALB (NAR), neutrophil-to-TBIL (NTBR), and neutrophil-to-IBIL (NIBR) ratios were greatly higher in glaucoma. Additionally, interestingly, lower ALB and BIL levels and higher NAR, NTBR, and NIBR were associated with severer glaucomatous visual impairment, and NAR, NTBR, and NIBR showed good accuracy as diagnostic tests for glaucoma severity, suggesting these indices might be useful as discriminative biomarkers for disease severity. Our current findings demonstrate associations between ALB, BIL, NAR, NTBR, NIBL, and glaucoma. It might be useful to use NAR, NTBR, and NIBR as predictive markers for disease severity and employ ALB/BIL as alternative therapy or adjuvant medicines in glaucoma patients.
Collapse
|
11
|
The association between long-term exposure to ambient fine particulate matter and glaucoma: A nation-wide epidemiological study among Chinese adults. Int J Hyg Environ Health 2021; 238:113858. [PMID: 34634756 DOI: 10.1016/j.ijheh.2021.113858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A growing body of evidence has confirmed the association between fine particulate matter (PM2.5) and ocular diseases, but little is known on the effect of long-term PM2.5 exposure on glaucoma. METHODS A national cross-sectional study of the Rural Epidemiology for Glaucoma was conducted in 10 provinces of China, and 33,701 adults aged 40 years or more were included. A satellite-based model at 1-km resolution level was used to estimate PM2.5 concentrations which were assigned to each participant according to geocoded home addresses. Logistic regression model was performed to investigate associations of long-term PM2.5 exposure with glaucoma and its subtypes. RESULTS Estimated PM2.5 concentrations ranged from 28.0 to 96.4 μg/m3. For each 10 μg/m3 increment in PM2.5, the adjusted odds ratios (ORs) were 1.07 (95% CI: 1.00-1.15) and 1.14 (95% CI: 1.02-1.26) for glaucoma and primary angle-closure glaucoma (PACG), respectively. A positive but non-significant association (OR = 1.05, 95% CI: 0.92-1.18) was detected between long-term exposure to PM2.5 and odds of primary open-angle glaucoma. The middle aged residents and non-smokers were more sensitive to the adverse effects of PM2.5. CONCLUSIONS Long-term PM2.5 exposure was associated with glaucoma and PACG in Chinese adults, which provided new insights on adverse ophthalmic effect of PM2.5.
Collapse
|
12
|
Tezel G. Multiplex protein analysis for the study of glaucoma. Expert Rev Proteomics 2021; 18:911-924. [PMID: 34672220 PMCID: PMC8712406 DOI: 10.1080/14789450.2021.1996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers. Multiplexing techniques for protein analysis offer a valuable approach for translational glaucoma research. AREAS COVERED This review provides an overview of the increasing applications of multiplex protein analysis for glaucoma research and also highlights current research challenges in the field and expected solutions from emerging technological advances. EXPERT OPINION Analytical techniques for multiplex analysis of proteins can help uncover neurodegenerative processes for enhanced treatment of glaucoma and can help identify molecular biomarkers for improved clinical testing and monitoring of this complex disease. This evolving field and continuously growing availability of new technologies are expected to broaden the comprehension of this complex neurodegenerative disease and speed up the progress toward new therapeutics and personalized patient care to prevent blindness from glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, USA
| |
Collapse
|
13
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|