1
|
Zhao C, Khan A, Wei Z, Jinghong W, Fangzheng Z, Guinan S, Yanhua H, Dan W, Zongjun C, Weidong W. Metabolic pathway analysis of methane from methanol as substrate in microbial consortium. BIORESOURCE TECHNOLOGY 2024; 413:131517. [PMID: 39317265 DOI: 10.1016/j.biortech.2024.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Simplified anaerobic digestion (SAD) of substrates facilitates microbial methanogenic pathways. In this study, a methane-producing microbial consortium from cow dung was enriched to determine the metabolism and metabolic pathway in the SAD of methanol. The results showed that methanol as a sole substrate produced 167 mL of methane at 10 days significantly higher than 58 mL, 17.6 mL, and 4 mL generated when methanol was combined with sodium formate, sodium formate alone, or sodium acetate. The relative abundance of Methanobacterium, Candidatus_Methanomethylophilus, Methanomassiliicoccus, and Methanosarcina was increased by 5.96 %, 3.77 %, 2.85 %, and 0.14 % in the methanol substrate of AD, respectively. Macrogenome sequencing indicates that methanol wasconverted into Methyl-CoM in the presence of Methanosarcina, which combines with Coenzyme B to produce methane. This study revealed that methanol is converted into methane by a simple pathway.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Aman Khan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Wei
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Wang Jinghong
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Zhang Fangzheng
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shen Guinan
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Hong Yanhua
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Wei Dan
- Institute of Plant Nutrition and Resource Environment, Beijing Academy of Agriculture and Forestry, Beijing 100097, China
| | - Cui Zongjun
- College of Agriculture, China Agricultural University, Beijing 100094, China
| | - Wang Weidong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
2
|
Min Z, Rui T, Yu L. A combination of microbial electrolysis cells and bioaugmentation can effectively treat synthetic wastewater containing polycyclic aromatic hydrocarbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2716-2731. [PMID: 38822610 DOI: 10.2166/wst.2024.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.
Collapse
Affiliation(s)
- Zhang Min
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China
| | - Tang Rui
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China
| | - Li Yu
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Beijing 100083, China E-mail:
| |
Collapse
|
3
|
Ng HJ, Goh KM, Yahya A, Abdul-Wahab MF. Microbial community dynamics and functional potentials in the conversion of oil palm wastes into biomethane. 3 Biotech 2024; 14:91. [PMID: 38419684 PMCID: PMC10897112 DOI: 10.1007/s13205-024-03933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Oil palm processing generates substantial waste materials rich in organic content, posing various environmental challenges. Anaerobic digestion (AD), particularly for palm oil mill effluent (POME), offers a sustainable solution, by converting waste into valuable biomethane for thermal energy or electricity generation. The synergistic activities of the AD microbiota directly affect the biomethane production, and the microbial community involved in biomethane production in POME anaerobic digestion has been reported. The composition of bacterial and archaeal communities varies under different substrate and physicochemical conditions. This review discusses the characteristics of POME, explores the microbial members engaged in each stage of AD, and elucidates the impacts of substrate and physicochemical conditions on the microbial community dynamics, with a specific focus on POME. Finally, the review outlines current research needs and provides future perspectives on optimizing the microbial communities for enhanced biomethane production from oil palm wastes.
Collapse
Affiliation(s)
- Hui Jing Ng
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Adibah Yahya
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
4
|
Álvarez-Barragán J, Cravo-Laureau C, Duran R. Fungal-bacterial network in PAH-contaminated coastal marine sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72718-72728. [PMID: 35614354 DOI: 10.1007/s11356-022-21012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fungal microbiome interacts with the other biotic components in coastal sediment playing a key role in the overall coordination of the whole microbial community. These interactions are affected by human activities, such as the constant affluence of polycyclic aromatic hydrocarbons (PAHs). Although fungi and bacteria interactions have been found to play a key role in PAH bioremediation in soil, the effect of PAHs on fungal diversity and their specific interactions with bacteria in coastal sediments are yet to be investigated. The understanding of fungal bacterial interactions under PAH contamination is critical for further bioremediation regarding the important fungal diversity observed in coastal sediment. Here, we investigated the fungal bacterial co-occurrence in PAH-contaminated sediments. The co-occurrence network, constructed with sequencing data (bacterial 16S and fungal 18S rRNA genes barcoding) from 51 PAH-contaminated samples, revealed modules dominated by either fungi or bacteria, reflecting probably the different types of interaction possible between fungi and bacteria. Then, a network constructed from non-contaminated sample data was compared with a network built from the corresponding PAH-contaminated samples issued from a mesocosm experiment. The comparison revealed the effect of PAHs in fungi and bacteria interactions, characterized by a PAH-contaminated network exhibiting less abundant and diverse fungal and bacterial ASVs than the non-contaminated network. However, the links between the remaining ASVs in the PAH-contaminated network showed stronger correlations. Noteworthy, an ASV affiliated to Chrytridiomycota phylum was identified as a keystone fungal ASV forming a module in association with facultative anaerobic and anaerobic bacteria affiliated to the families Prolixibacteraceae, Fusobacteriaceae, and Desulfobulbaceae. These results suggest that fungi promote bacterial anaerobic metabolisms, which are important to cope with the presence of PAHs in sediments. Our study reveals the importance of fungal bacterial interactions in coastal sediments paving the way for future studies to fully understand fungal role in coastal sediment.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
| |
Collapse
|
5
|
Navarrete-Euan H, Rodríguez-Escamilla Z, Pérez-Rueda E, Escalante-Herrera K, Martínez-Núñez MA. Comparing Sediment Microbiomes in Contaminated and Pristine Wetlands along the Coast of Yucatan. Microorganisms 2021; 9:877. [PMID: 33923859 PMCID: PMC8073884 DOI: 10.3390/microorganisms9040877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Microbial communities are important players in coastal sediments for the functioning of the ecosystem and the regulation of biogeochemical cycles. They also have great potential as indicators of environmental perturbations. To assess how microbial communities can change their composition and abundance along coastal areas, we analyzed the composition of the microbiome of four locations of the Yucatan Peninsula using 16S rRNA gene amplicon sequencing. To this end, sediment from two conserved (El Palmar and Bocas de Dzilam) and two contaminated locations (Sisal and Progreso) from the coast northwest of the Yucatan Peninsula in three different years, 2017, 2018 and 2019, were sampled and sequenced. Microbial communities were found to be significantly different between the locations. The most noticeable difference was the greater relative abundance of Planctomycetes present at the conserved locations, versus FBP group found with greater abundance in contaminated locations. In addition to the difference in taxonomic groups composition, there is a variation in evenness, which results in the samples of Bocas de Dzilam and Progreso being grouped separately from those obtained in El Palmar and Sisal. We also carry out the functional prediction of the metabolic capacities of the microbial communities analyzed, identifying differences in their functional profiles. Our results indicate that landscape of the coastal microbiome of Yucatan sediment shows changes along the coastline, reflecting the constant dynamics of coastal environments and their impact on microbial diversity.
Collapse
Affiliation(s)
- Herón Navarrete-Euan
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Zuemy Rodríguez-Escamilla
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, Yucatán 97302, Mexico;
| | - Karla Escalante-Herrera
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| |
Collapse
|
6
|
Zhu Q, Dai L, Wang Y, Tan F, Chen C, He M, Maeda T. Enrichment of waste sewage sludge for enhancing methane production from cellulose. BIORESOURCE TECHNOLOGY 2021; 321:124497. [PMID: 33307481 DOI: 10.1016/j.biortech.2020.124497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Low ability of waste sewage sludge to degrade cellulose is observed due to its less cellulolytic bacteria content. The enrichment of sewage sludge in the absence or presence of carboxymethylcellulose (CMC) was conducted to improve anaerobic digestion (AD) of cellulose in this study. Compared to initial sewage sludge (IS), enriched sludge without CMC addition (ES) displayed 69.81% higher CH4 yield and about 1.7-fold greater anaerobic biodegradation of cellulose. In particular, bacterial and archaeal diversities in samples inoculated with ES were significantly altered, with Ruminiclostridium and Methanobacterium as the predominant genera. Enriched sludge with CMC addition (ESC) displayed enhanced methane production at initial cellulose fermentation but showed no distinct difference compared with the control after incubation 24 days. These findings suggest that enrichment of waste sewage sludge without CMC addition is more beneficial for promoting AD of cellulose, providing a novel insight for efficient energy utilization of lignocellulosic wastes.
Collapse
Affiliation(s)
- Qili Zhu
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Lichun Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Yanwei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Furong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Chenghan Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| |
Collapse
|