1
|
Abstract
With the rapid increase in the world’s population, there is an ever-growing need for a sustainable food supply. Agriculture is one of the pillars for worldwide food provisioning, with fruits and vegetables being essential for a healthy diet. However, in the last few years the worldwide dispersion of virulent plant pests and diseases has caused significant decreases in the yield and quality of crops, in particular fruit, cereal and vegetables. Climate change and the intensification of global trade flows further accentuate the issue. Integrated Pest Management (IPM) is an approach to pest control that aims at maintaining pest insects at tolerable levels, keeping pest populations below an economic injury level. Under these circumstances, the early identification of pests and diseases becomes crucial. In this work, we present the first step towards a fully fledged, semantically enhanced decision support system for IPM. The ultimate goal is to build a complete agricultural knowledge base by gathering data from multiple, heterogeneous sources and to develop a system to assist farmers in decision making concerning the control of pests and diseases. The pest classifier framework has been evaluated in a simulated environment, obtaining an aggregated accuracy of 98.8%.
Collapse
|
2
|
Plant Recognition Using Morphological Feature Extraction and Transfer Learning over SVM and AdaBoost. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant species recognition from visual data has always been a challenging task for Artificial Intelligence (AI) researchers, due to a number of complications in the task, such as the enormous data to be processed due to vast number of floral species. There are many sources from a plant that can be used as feature aspects for an AI-based model, but features related to parts like leaves are considered as more significant for the task, primarily due to easy accessibility, than other parts like flowers, stems, etc. With this notion, we propose a plant species recognition model based on morphological features extracted from corresponding leaves’ images using the support vector machine (SVM) with adaptive boosting technique. This proposed framework includes the pre-processing, extraction of features and classification into one of the species. Various morphological features like centroid, major axis length, minor axis length, solidity, perimeter, and orientation are extracted from the digital images of various categories of leaves. In addition to this, transfer learning, as suggested by some previous studies, has also been used in the feature extraction process. Various classifiers like the kNN, decision trees, and multilayer perceptron (with and without AdaBoost) are employed on the opensource dataset, FLAVIA, to certify our study in its robustness, in contrast to other classifier frameworks. With this, our study also signifies the additional advantage of 10-fold cross validation over other dataset partitioning strategies, thereby achieving a precision rate of 95.85%.
Collapse
|