1
|
Xiong J, Yin J, Guo S, Yin W, Rao W, Chao N. Using GRACE to Detect Groundwater Variation in North China Plain after South-North Water Diversion. GROUND WATER 2023; 61:402-420. [PMID: 36098234 DOI: 10.1111/gwat.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 09/03/2022] [Indexed: 05/14/2023]
Abstract
The gravity recovery and climate experiment (GRACE) and its Follow-On mission provide a versatile tool for monitoring groundwater depletion in North China Plain (NCP). However, intermittent data gaps and inherent coarse spatial resolution have restricted the continuous detection of regional groundwater storage anomaly (GWSA) after 2014, the period of interest during the implementation of the south-to-north water diversion middle route project (SNWDP). Here, we investigated the spatiotemporal changes of GWSA in the NCP during 2004 to 2020 based on continuous downscaled GRACE data. First, we derived the continuous terrestrial water storage anomaly from six GRACE and Follow-On solutions (i.e., spherical harmonics (SH) and mass concentration [mascon] solutions). Second, we employed a long short-term memory (LSTM) model and water balance equation to downscale GWSA (i.e., 0.25° × 0.25°). Lastly, we investigated its spatiotemporal characteristics before (2004 to 2014) and after (2015 to 2020) the SNWDP operation. We show the applicability of the continuous downscaled GWSA to capture the characteristics of in situ measurements. The GWSA detects groundwater depletion at a significant (p < 0.05) rate of -17.09 ± 1.80 (SH) and -17.87 ± 1.65 (mascon) mm/a during 2004 to 2014, but a recovering trend of 7.18 ± 3.98 (SH) and 8.23 ± 4.99 (mascon) during 2015 to 2018. The subsequent groundwater extraction and precipitation reduction from 2019 to 2020, resulted in the decreasing trend of GWSA from 2015 to 2020, which is -19.11 ± 8.75 (SH) and -19.72 ± 9.08 mm/a (mascon), respectively. Spatially, the overall depletion trends become nonsignificant along the canals of SNWDP compared to the period 2004 to 2014, and groundwater recovering with trends <6 mm/a near Beijing and Tianjin are detected by the mascon solution during 2015 to 2020.
Collapse
Affiliation(s)
- Jinghua Xiong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 299 Donghu South Road, Wuhan, 430072, Hubei, China
| | - Jiabo Yin
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 299 Donghu South Road, Wuhan, 430072, Hubei, China
| | | | - Wenjie Yin
- Qian Xuesen Laboratory Space Technology, China Academy Space Technology, 104 Youyi Road, Beijing, 100094, China
| | - Weilong Rao
- Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nengfang Chao
- College of Marine Science and Technology, China University of Geosciences, 388 Lu Mo Road, Wuhan, 430074, China
| |
Collapse
|
2
|
Chakraborty SK, Chandel NS, Jat D, Tiwari MK, Rajwade YA, Subeesh A. Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
A hybrid deep neural network approach to estimate reference evapotranspiration using limited climate data. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06661-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Discharge Estimation Using Integrated Satellite Data and Hybrid Model in the Midstream Yangtze River. REMOTE SENSING 2021. [DOI: 10.3390/rs13122272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Remotely sensing data have advantages in filling spatiotemporal gaps of in situ observation networks, showing potential application for monitoring floods in data-sparse regions. By using the water level retrievals of Jason-2/3 altimetry satellites, this study estimates discharge at a 10-day timescale for the virtual station (VS) 012 and 077 across the midstream Yangtze River Basin during 2009–2016 based on the developed Manning formula. Moreover, we calibrate a hybrid model combined with Gravity Recovery and Climate Experiment (GRACE) data, by coupling the GR6J hydrological model with a machine learning model to simulate discharge. To physically capture the flood processes, the random forest (RF) model is employed to downscale the 10-day discharge into a daily scale. The results show that: (1) discharge estimates from the developed Manning formula show good accuracy for the VS012 and VS077 based on the improved Multi-subwaveform Multi-weight Threshold Retracker; (2) the combination of the GR6J and the LSTM models substantially improves the performance of the discharge estimates solely from either the GR6J or LSTM models; (3) RF-downscaled daily discharge demonstrates a general consistency with in situ data, where NSE/KGE between them are as high as 0.69/0.83. Our approach, based on multi-source remotely sensing data and machine learning techniques, may benefit flood monitoring in poorly gauged areas.
Collapse
|
5
|
Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D. Machine Learning in Agriculture: A Comprehensive Updated Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3758. [PMID: 34071553 PMCID: PMC8198852 DOI: 10.3390/s21113758] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/05/2023]
Abstract
The digital transformation of agriculture has evolved various aspects of management into artificial intelligent systems for the sake of making value from the ever-increasing data originated from numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable potential to handle numerous challenges in the establishment of knowledge-based farming systems. The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing the recent scholarly literature based on keywords' combinations of "machine learning" along with "crop management", "water management", "soil management", and "livestock management", and in accordance with PRISMA guidelines. Only journal papers were considered eligible that were published within 2018-2020. The results indicated that this topic pertains to different disciplines that favour convergence research at the international level. Furthermore, crop management was observed to be at the centre of attention. A plethora of machine learning algorithms were used, with those belonging to Artificial Neural Networks being more efficient. In addition, maize and wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally, a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential advantages of using machine learning in agriculture and contributing to a more systematic research on this topic.
Collapse
Affiliation(s)
- Lefteris Benos
- Centre of Research and Technology-Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (IBO), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece; (L.B.); (A.C.T.); (G.D.); (D.K.)
| | - Aristotelis C. Tagarakis
- Centre of Research and Technology-Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (IBO), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece; (L.B.); (A.C.T.); (G.D.); (D.K.)
| | - Georgios Dolias
- Centre of Research and Technology-Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (IBO), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece; (L.B.); (A.C.T.); (G.D.); (D.K.)
| | - Remigio Berruto
- Department of Agriculture, Forestry and Food Science (DISAFA), University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy;
| | - Dimitrios Kateris
- Centre of Research and Technology-Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (IBO), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece; (L.B.); (A.C.T.); (G.D.); (D.K.)
| | - Dionysis Bochtis
- Centre of Research and Technology-Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (IBO), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece; (L.B.); (A.C.T.); (G.D.); (D.K.)
- FarmB Digital Agriculture P.C., Doiranis 17, GR 54639 Thessaloniki, Greece
| |
Collapse
|
6
|
Abstract
This study is about the manufacturing of a personified automatic robotic lawn mower with image recognition. The system structure is that the platform above the crawler tracks is combined with the lawn mower, steering motor, slide rail, and webcam to achieve the purpose of personification. Crawler tracks with a strong grip and good ability to adapt to terrain are selected as a moving vehicle to simulate human feet. In addition, a lawn mower mechanism is designed to simulate the left and right swing of human mowing to promote efficiency and innovation, and then human eyes are replaced by Webcam to identify obstacles. A human-machine interface is added so that through the mobile phone remote operation, users can choose a slow mode, inching mode, and obstacle avoidance mode on the human-machine interface. When the length of both sides of the rectangular area is input to the program, the automatic robotic lawn mower will complete the instruction according to the specified path. The chip of a Digital Signal Processor (DSP) TMS320F2808 is used as the core controller, and Raspberry Pi is used as image recognition and human-machine interface design. This robot can reduce labor costs and improve the efficiency of mowing by remote control. In addition to the use as an automatic mower on farms, this study concept can also be used in the lawn maintenance of golf courses and school playgrounds.
Collapse
|
7
|
Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Water stress is one of the major challenges to food security, causing a significant economic loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural productivity through optimization of plant water usage, maximizing plant breeding strategies, and preventing forest wildfire for better ecosystem management. Recent advancements in sensor technologies have enabled high-throughput, non-contact, and cost-efficient plant water stress assessment through intelligence system modeling. The advanced deep learning sensor fusion technique has been reported to improve the performance of the machine learning application for processing the collected sensory data. This paper extensively reviews the state-of-the-art methods for plant water stress assessment that utilized the deep learning sensor fusion approach in their application, together with future prospects and challenges of the application domain. Notably, 37 deep learning solutions fell under six main areas, namely soil moisture estimation, soil water modelling, evapotranspiration estimation, evapotranspiration forecasting, plant water status estimation and plant water stress identification. Basically, there are eight deep learning solutions compiled for the 3D-dimensional data and plant varieties challenge, including unbalanced data that occurred due to isohydric plants, and the effect of variations that occur within the same species but cultivated from different locations.
Collapse
|
8
|
Ravindran SM, Bhaskaran SKM, Ambat SKN. A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter. ENVIRONMENTAL PROCESSES 2021; 8:1567-1599. [PMCID: PMC8486967 DOI: 10.1007/s40710-021-00543-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
Hydro-agrological research considers the reference evapotranspiration (ETo), driven by meteorological variables, crucial for achieving precise irrigation in precision agriculture. ETo modelling based on a single meteorological parameter would be beneficial in places where the collection of climatic parameters is challenging. The aim of this research is to develop a deep neural network (DNN) architecture that predicts daily ETo with a single input parameter selected based on the feature importance (FI) score generated by the machine learning techniques, random forest (RF), and extreme gradient boosting (XGBoost). This study also investigated the potential of SHapley Additive exPlanations to interpret and validate the outcomes of the feature selection methods by assessing the contributions of each feature to the ETo prediction. These methods recommended solar radiation as a significant parameter in the datasets of three California Irrigation Management System (CIMIS) weather stations located in distinct ETo zones. Three ETo models (DNN-Ret, XGB-Ret, and RF-Ret) were built using solar radiation as the sole input, and CIMIS ETo as the output. The performance evaluation of the developed models proved that DNN-Ret outperformed XGB-Ret and RF-Ret regardless of the dataset, with coefficients of determination (R2) ranging from 0.914 to 0.954 in the local scenario, with an average decrease of 8–9.5% in mean absolute error and root mean squared error, and an improvement of 2.6–2.9% in Nash–Sutcliffe efficiency and 1.7–2% increase in R2. The overall result analysis highlighted the efficiency of DNN-Ret in the single input parameter based ETo modelling in diverse climatic zones.
Collapse
Affiliation(s)
- Sowmya Mangalath Ravindran
- Department of Computer Applications, Cochin University of Science and Technology, Kochi, Kerala 682022 India
| | | | | |
Collapse
|
9
|
Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island. SUSTAINABILITY 2020. [DOI: 10.3390/su12062419] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change induced uneven patterns of rainfall emphasize the use of supplemental irrigation in rainfed agriculture. The Penman–Monteith method was used to calculate supplemental irrigation for water budgeting of a potato crop in Prince Edward Island, Canada. Cumulative gaps between rainfall and crop evapotranspiration (ETc) during August and September of the study years were due to high crop coefficient factor, justifying the need for supplemental irrigation. Pressurized irrigation systems, including sprinklers, fertigation, and drip irrigation were installed, to evaluate the impact of scheduled supplemental irrigation in offsetting deficits in irrigation water requirements in comparison with conventional practice of rainfed cultivation (control). A two-way ANOVA examined the effect of irrigation methods and year on potato tuber yield, water productivity, tuber quality, and payout. Sprinkler and fertigation systems performed better than drip and control treatments. In terms of payout returns and potato tuber quality (percentage of marketable potatoes), the sprinkler treatment performed significantly better than the other treatments. However, for water productivity, fertigation treatment performed significantly better than control and sprinkler treatments during both years. The use of supplemental irrigation is recommended for profitable cultivation of potatoes in soil, agricultural, and environmental conditions resembling to those of Prince Edward Island.
Collapse
|