1
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
2
|
Aguilar GJ, Tapia-Blácido DR. Evaluating how avocado residue addition affects the properties of cassava starch-based foam trays. Int J Biol Macromol 2023; 240:124348. [PMID: 37028632 DOI: 10.1016/j.ijbiomac.2023.124348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Avocado seed (AS) is an interesting residue for biopackaging because it has high starch content (41 %). We have prepared composite foam trays based on cassava starch containing different AS concentrations (0, 5, 10 and 15 % w/w) by thermopressing. Composite foam trays with AS were colorful because this residue contains phenolic compounds. The composite foam trays 10AS and 15AS were thicker (2.1-2.3 mm) and denser (0.8-0.9 g/cm3), but less porous (25.6-35.2 %) than cassava starch foam (Control). High AS concentrations yielded composite foam tray less puncture resistant (~40.4 N) and less flexible (0.7-0.9 %), but with tensile strength values (2.1 MPa) almost similar to the Control. The composite foam trays were less hydrophilic and more water resistant than control due to the presence of protein, lipid, and fibers and starch with more amylose content in AS. High AS concentration in composite foam tray decreases the temperature of thermal decomposition peak corresponding to starch. At temperatures >320 °C the foam trays with AS were more resistant to the thermal degradation due to the presence of fibers in AS. High AS concentrations delayed the degradation time of the composite foam trays by 15 days.
Collapse
Affiliation(s)
- Guilherme J Aguilar
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Delia R Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Shi H, Zhu Y, Ju Q, Shen Y, Wang T. Enhanced properties of starch based foams with modified starch/polyester blend as masterbatch. J Appl Polym Sci 2022. [DOI: 10.1002/app.52951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huidong Shi
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Yanfeng Zhu
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Qing Ju
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Yucai Shen
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Suqian Advanced Materials Institute of Nanjing Tech University Suqian China
| | - Tingwei Wang
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Suqian Advanced Materials Institute of Nanjing Tech University Suqian China
| |
Collapse
|
4
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
5
|
Chorfa N, Nlandu H, Belkacemi K, Hamoudi S. Physical and Enzymatic Hydrolysis Modifications of Potato Starch Granules. Polymers (Basel) 2022; 14:polym14102027. [PMID: 35631908 PMCID: PMC9143340 DOI: 10.3390/polym14102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, a valorization of the starch stemming from downgraded potatoes was approached through the preparation of starch nanoparticles using different physical methods, namely liquid and supercritical carbon dioxide, high energy ball milling (HEBM), and ultrasonication on the one hand and enzymatic hydrolysis on the other hand. Starch nanoparticles are beneficial as a reinforcement in food packaging technology as they enhance the mechanical and water vapor resistance of polymers. Also, starch nanoparticles are appropriate for medical applications as carriers for the delivery of bioactive or therapeutic agents. The obtained materials were characterized using X-ray diffraction as well as scanning and transmission electron microscopies (SEM and TEM), whereas the hydrolysates were analyzed using size exclusion chromatography coupled with pulsed amperometric detection (SEC-PAD). The acquired results revealed that the physical modification methods led to moderate alterations of the potato starch granules’ size and crystallinity. However, enzymatic hydrolysis conducted using Pullulanase enzyme followed by nanoprecipitation of the hydrolysates allowed us to obtain very tiny starch nanoparticles sized between 20 and 50 nm, much smaller than the native starch granules, which have an average size of 10 μm. The effects of enzyme concentration, temperature, and reaction medium pH on the extent of hydrolysis in terms of the polymer carbohydrates’ fractions were investigated. The most promising results were obtained with a Pullulanase enzyme concentration of 160 npun/g of starch, at a temperature of 60 °C in a pH 4 phosphate buffer solution resulting in the production of hydrolysates containing starch polymers with low molecular weights corresponding mainly to P-10, P-5, and fractions with molecular weights lower than P-5 Pullulan standards.
Collapse
Affiliation(s)
| | | | | | - Safia Hamoudi
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 408460)
| |
Collapse
|
6
|
Abstract
Variations in mixture proportions of plasticizers, additives, and crosslinking agents have significant impacts on mechanical performance of starch-based foam materials. In particular, starch/ethylene-vinyl acetate (EVA) foam materials have been developed with improved mechanical strength by optimizing the formulation. There is a lack of numerical correlations that could help analyze the effects of components and provide a predictive method for future research. In this study, we develop simple and accurate predictions for tensile strength and resilience based on mixture proportions of components for starch-based/EVA foam materials. The models constructed might be used to help design mixture proportions of starch-based foam materials. By combining optimization results from the Taguchi method and machine learning approaches, it is expected that more quantitative data can be extracted from fewer experimental trials at the same time.
Collapse
Affiliation(s)
- Yun Zhang
- North Carolina State University, Raleigh, NC, USA
| | - Xiaojie Xu
- North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Trends and challenges of starch-based foams for use as food packaging and food container. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Whulanza Y, Azadi A, Supriadi S, Rahman S, Chalid M, Irsyad M, Nadhif M, Kreshanti P. Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Heliyon 2022; 8:e08600. [PMID: 35028440 PMCID: PMC8741438 DOI: 10.1016/j.heliyon.2021.e08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/21/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
A polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additionally, this fixation system has been widely applied in fixing maxillofacial fracture in child patients. An ideal degradable implant has a considerable mass degradation rate that proved structural integrity to the healing bone. At this moment, poly(lactic acid) (PLA) or poly(lactic-co-glycolic acid) (PLGA) are the most common materials used as degradable implant. This composition of materials has a degradation rate of more than a year. A long degradation rate increases the long-term biohazard risk for the bone host. Therefore, a faster degradation rate with adequate strength of implant is the focal point of this research. This study tailored the tunable degradability of starch with strength properties of PLA. Blending system of starch and PLA has been reported widely, but none of them were aimed to be utilized as medical implant. Here, various concentrations of sago starch/PLA and Polyethylene glycol (PEG) were composed to meet the requirement of maxillofacial miniplate implant. The implant was realized using an injection molding process to have a six-hole-miniplate with 1.2 mm thick and 34 mm length. The specimens were physiochemically characterized through X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier Transform Infrared spectroscopy. It is found that the microstructure and chemical interactions of the starch/PLA/PEG polymers are correlated with the mechanical characteristics of the blends. Compared to a pure PLA miniplate, the sago starch/PLA/PEG blend shows a 60-80% lower tensile strength and stiffness. However, the flexural strength and elongation break are improved. A degradation study was conducted to observe the mass degradation rate of miniplate for 10 weeks duration. It is found that a maximum concentration of 20% sago starch and 10% of PEG in the PLA blending has promising properties as desired. The blends showed a 100-150% higher degradability rate compared to the pure PLA or a commercial miniplate. The numerical simulation was conducted and confirmed that the miniplate in the mandibular area were shown to be endurable with standard applied loading. The mechanical properties resulted from the experimental work was applied in the Finite Element Analysis to find that our miniplate were in acceptable level. Lastly, the in-vitro test showed that implants are safe to human cell with viability more than 80%. These findings shall support the use of this miniplate in rehabilitating mandibular fractures with faster degradation with acceptance level of mechanical characteristic specifically in case of 4-6 weeks bone union.
Collapse
Affiliation(s)
- Y. Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - A. Azadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Indonesian Agency for Agricultural Research and Development, Indonesia
| | - S. Supriadi
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
| | - S.F. Rahman
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Chalid
- Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - M. Irsyad
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
| | - M.H. Nadhif
- Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia
- Department of Medical Physics, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - P. Kreshanti
- Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Indonesia
| |
Collapse
|