1
|
Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Soil contamination with organic contaminants and various heavy metals has become a global environmental concern. Biochar application for the remediation of polluted soils may render a novel solution to soil contamination issues. However, the complexity of the decontaminating mechanisms and the real environment significantly influences the preparation and large-scale application of biochar for soil ramification. This review paper highlights the utilization of biochar in immobilizing and eliminating the heavy metals and organic pollutants from contaminated soils and factors affecting the remediation efficacy of biochar. Furthermore, the risks related to biochar application in unpolluted agricultural soils are also debated. Biochar production conditions (pyrolysis temperature, feedstock type, and residence time) and the application rate greatly influence the biochar performance in remediating the contaminated soils. Biochars prepared at high temperatures (800 °C) contained more porosity and specific surface area, thus offering more adsorption potential. The redox and electrostatic adsorption contributed more to the adsorption of oxyanions, whereas ion exchange, complexation, and precipitation were mainly involved in the adsorption of cations. Volatile organic compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) produced during biochar pyrolysis induce negative impacts on soil alga, microbes, and plants. A careful selection of unpolluted feedstock and its compatibility with carbonization technology having suitable operating conditions is essential to avoid these impurities. It would help to prepare a specific biochar with desired features to target a particular pollutant at a specific site. This review provided explicit knowledge for developing a cost-effective, environment-friendly specific biochar, which could be used to decontaminate targeted polluted soils at a large scale. Furthermore, future study directions are also described to ensure a sustainable and safe application of biochar as a soil improver for the reclamation of polluted soils.
Collapse
|
2
|
Lebrun M, Miard F, Trakal L, Bourgerie S, Morabito D. The reduction of the As and Pb phytotoxicity of a former mine technosol depends on the amendment type and properties. CHEMOSPHERE 2022; 300:134592. [PMID: 35430201 DOI: 10.1016/j.chemosphere.2022.134592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In remediation of metal(loid) polluted soils, it is crucial to improve soil conditions and reduce metal(loid) toxicity to permit plant growth. To do that, amendments, such as biochar, activated carbon, and redmud, can be applied to the soil. Their effects are dependent on their type and properties. The aims of this study were thus to evaluate the potential of diverse biochars, activated carbons, and redmuds to reduce phytotoxicity of a former mine technosol polluted with As and Pb. Two pots experiments were set up. The first one applied on Pontgibaud technosol ten biochars, eight activated carbons, and three redmuds, at 2% for the biochars and activated carbons and 1% for the redmud. Soil pore water properties (pH, electrical conductivity), metal(loid) mobility, and Phaseolus vulgaris growth were monitored. In a second experiment, the five best amendments, one redmud associated with two biochars and two activated carbons, selected based on their ability to improve soil conditions, immobilize metal(loid)s and improve plant growth, were applied. The same plant species was used and soil and plant parameters were measured. Results demonstrated that not all amendments were capable of ameliorating soil conditions and reducing soil phytotoxicity. Moreover, the five selected amendments (biochars from oak bark sapwood and bamboo, activated carbons from vegetal feedstock chemically activated and physically activated, modified redmud) showed good sorption capacity towards Pb, with maximum sorption capacity between 63 and 217 mg g-1, depending on the amendment, and their combined application led to better soil properties improvement than the single amendments. However, plant growth was only ameliorated further than a single application in the redmud-biochar combination but not in the association of redmud with activated carbon. This study is one of the first to deliver a rapid phytotoxicity test screening demonstrating that redmud associated with particular biochar could be beneficial in reducing the phytotoxicity of technosol polluted with As and Pb and thus allow plant growth and a phytomanagement process.
Collapse
Affiliation(s)
- Manhattan Lebrun
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France.
| | - Florie Miard
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Praha 6, Suchdol, Czech Republic
| | - Sylvain Bourgerie
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| | - Domenico Morabito
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| |
Collapse
|
3
|
Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114973. [PMID: 35398638 DOI: 10.1016/j.jenvman.2022.114973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination caused by mining activities is a global issue. These heavy metals can be enriched in plants and animals through the food chain, and eventually transferred to the human system and threatening public health. Biochar, as an environmentally friendly soil remediation agent, can effectively immobilize heavy metals in soil. However, most researchers concern more about the remediation effect and mechanism of biochar for industrial and agricultural contaminated soil, while related reviews focusing on mining soil remediation are limited. Furthermore, the remediation effect of soil in mining areas is affected by many factors, such as physicochemical properties of biochar, pyrolysis conditions, soil conditions, mining environment and application method, which can lead to great differences in the remediation effect of biochar in diverse mining areas. Therefore, it is necessary to systematically unravel the relevant knowledge of biochar remediation, which can also provide a guide for future studies on biochar remediation of contaminated soils in mining areas. The present paper first reviews the negative effects of mining activities on soil and the advantages of biochar relative to other remediation methods, followed by the mechanism and influencing factors of biochar on reducing heavy metal migration and bioavailability in mining soil were systematically summarized. Finally, the main research directions and development trends in the future are pointed out, and suggestions for future development are proposed.
Collapse
Affiliation(s)
- Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
The Effects of Rabbit Manure-Derived Biochar on Soil Health and Quality Attributes of Two Mine Tailings. SUSTAINABILITY 2022. [DOI: 10.3390/su14031866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biochar amendment is becoming a promising technology for mining soil restoration. The addition of biochar can improve soil microbiological parameters related to soil quality, such as enzyme activities. The aim of the present research was to evaluate the effect of rabbit manure (RM) and two rabbit manure biochars prepared at two pyrolysis temperatures (300 and 600 °C) on the biochemical properties of two mining soils in the Portman area (Spain) in the presence or absence of vegetation. Soils were amended with the RM, the two biochars and a mixture of the rabbit manure and biochars (50/50 w/w) at a rate of 10% in a mesocosms experiment to study the changes in dehydrogenase, phosphomonoesterase, β-glucosidase activities, geometric mean of enzyme activities (GMea) and soil microbial biomass (SMB). Changes in individual enzyme activities were not always consistent. However, when using the GMea as a measure of soil quality, our results showed an increase in the GMea (217–360 times) after the addition of rabbit manure to mining soils, while this increase was from 81–270 times following the addition of rabbit manure with biochar prepared at 300 °C. Therefore, the use of biochar prepared at low temperatures could be a promising direction for the improvement of soil quality and soil carbon sequestration.
Collapse
|
5
|
Ghosh D, Maiti SK. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:559-576. [PMID: 33174450 DOI: 10.1080/15226514.2020.1840510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mining activities causes heavy metal pollution and adversely affect the ecological safety and human well-being. Phytoremediation-biochar synergy can effectively remediate mine spoils contaminated with heavy metals (HM). A review which focuses exclusively on the application of biochar assisted phytoremediation in HM contaminated mine spoil is lacking. Mechanisms of metal immobilization by biochar, potential plants and contaminated biomass disposal methods has also been reviewed. Availability of biochar feedstock and production conditions, optimization of application rate, application techniques, selection of suitable hyperaccumulators and cost optimization of bulk biochar production are the key to a successful biochar-based HM remediation of mine tailings and coalmine spoil. Presently, herbs and shrubs are mostly used as phytoremediators, use of woody trees would encourage a long-term metal sequestration which would reduce the cost of biomass disposal. Also, use of non-edible plants would prevent the plants from entering the food chain. For a holistic biochar-phytoremediation technique, incineration and pyrolysis can effectively dispose contaminated biomass. From the economical viewpoint, the environment cost-benefit analysis should be considered before considering the feasibility of a technology.HighlightsMass scale in-situ biochar production and economics are keys issues.Biochar assisted phytoremediation for HM contaminated mine spoils.Long term studies using woody biomass needs attention.Disposal of contaminated biomass by pyrolysis method.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| |
Collapse
|
6
|
Effect of Biochar and Hydrochar on Forms of Aluminium in an Acidic Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biochars and hydrochars have a significant effect on soil properties linked to fertility or to carbon cycling and have been proposed as an amendment to increase soil productivity, particularly in acidic soils. Phytotoxic forms of aluminium (Al) are relatively abundant in acidic soils and, for a long period of time, liming has been used to correct this. Ca(OH)2, a pig manure (PM) and two biochars and two hydrochars prepared from pig manure were studied for their effects on Al fractions. Biochars were prepared at 450 °C (BPC450) and 600 °C (BPC600) and hydrochars were obtained using a pig manure solution (ratio 30:70) that was heated at 200 °C (HPC200) and 240 °C (HPC240). A treatment with an amount of Ca(OH)2 necessary to increase soil pH to the same pH value as the average in the treatments BPC450, BPC600, HPC200, HPC240 and PM was used for comparison. The fractionation of Al was studied, with the liming treatment allowing the differentiation between changes in fractionation driven by pH changes from other mechanisms. In relation to the control, all soil amendments presented high capacity of controlling toxic Al, similar to a traditional liming product (Ca(OH)2) and decreased the exchangeable Al extracted by NH4Cl. Both types of materials (biochars and hydrochars) lead to the formation of an increased number of organo-aluminium complexes (OAC). Biochars lead to the formation of OAC of low to medium stability, while hydrochars promoted the formation of OAC of high stability.
Collapse
|
7
|
Clays, Limestone and Biochar Affect the Bioavailability and Geochemical Fractions of Cadmium and Zinc from Zn-Smelter Polluted Soils. SUSTAINABILITY 2020. [DOI: 10.3390/su12208606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca-bentonite (CB) alone and in a mixture with limestone (L), tobacco biochar (TB) and zeolite (Z) on the fixation, geochemical fractions and absorption of Cd and Zn by Chinese cabbage in smelter heavily polluted (S-HP) and smelter low polluted (S-LP) soils were investigated. The results showed that the CB + TB and CB + L + TB treatments significantly immobilized Cd up to 22.0% and 29.7%, respectively, and reduced uptake by Chinese cabbage shoot to 36.0% with CB + Z + L and 61.3% with CB + L in S-HP and S-LP soils compared with the control. The CB + Z + L + TB treatment mobilized Cd up to 4.4% and increased absorption in the shoot by 9.9% in S-HP soil. The greatest immobilization of Zn was 53.2% and 58.2% with the CB + Z + L + TB treatment, which reduced Zn uptake in the plant shoot by 10.0% with CB + L and 58.0% with CB + Z + L + TB in S-HP and S-LP soils. The CB + Z + TB and CB + TB treatments mobilized Zn up to 35.4% and 4.9%, respectively, in both soils. Furthermore, the uptake of Zn in plant shoot was observed by 59.0% and 7.9% with application of CB + Z and CB + TB treatments, respectively, in S-HP and S-LP soils. Overall, our results suggest that Ca-bentonite alone and in mixtures with different amendments can be used to reduce the phyto-extraction of Cd and Zn in Zn-smelter polluted soils.
Collapse
|