1
|
Jung EY, Suleiman HO, Tae HS, Park CS. A Review of Plasma-Synthesized and Plasma Surface-Modified Piezoelectric Polymer Films for Nanogenerators and Sensors. Polymers (Basel) 2024; 16:1548. [PMID: 38891493 PMCID: PMC11174466 DOI: 10.3390/polym16111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In this review, we introduce recently developed plasma-based approaches for depositing and treating piezoelectric nanoparticles (NPs) and piezoelectric polymer films for nanogenerator (NG) and sensor applications. We also present the properties and an overview of recently synthesized or modified piezoelectric materials on piezoelectric polymers to highlight the existing challenges and future directions of plasma methods under vacuum, low pressure, and ambient air conditions. The various plasma processes involved in piezoelectric NGs and sensors, including plasma-based vapor deposition, dielectric barrier discharge, and surface modification, are introduced and summarized for controlling various surface properties (etching, roughening, crosslinking, functionalization, and crystallinity).
Collapse
Affiliation(s)
- Eun-Young Jung
- The Institute of Electronic Technology, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Habeeb Olaitan Suleiman
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Heung-Sik Tae
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Choon-Sang Park
- Electrical Engineering, Milligan University, Johnson City, TN 37682, USA
| |
Collapse
|
2
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Muthusamy L, Uppalapati B, Azad S, Bava M, Koley G. Self-Polarized P(VDF-TrFE)/Carbon Black Composite Piezoelectric Thin Film. Polymers (Basel) 2023; 15:4131. [PMID: 37896374 PMCID: PMC10610547 DOI: 10.3390/polym15204131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Self-polarized energy harvesting materials have seen increasing research interest in recent years owing to their simple fabrication method and versatile application potential. In this study, we systematically investigated self-polarized P(VDF-TrFE)/carbon black (CB) composite thin films synthesized on flexible substrates, with the CB content varying from 0 to 0.6 wt.% in P(VDF-TrFE). The presence of -OH functional groups on carbon black significantly enhances its crystallinity, dipolar orientation, and piezoelectric performance. Multiple characterization techniques were used to investigate the crystalline quality, chemical structure, and morphology of the composite P(VDF-TrFE)/CB films, which indicated no significant changes in these parameters. However, some increase in surface roughness was observed when the CB content increased. With the application of an external force, the piezoelectrically generated voltage was found to systematically increase with higher CB content, reaching a maximum value at 0.6 wt.%, after which the sample exhibited low resistance. The piezoelectric voltage produced by the unpoled 0.6 wt.% CB composite film significantly exceeded the unpoled pure P(VDF-TrFE) film when subjected to the same applied strain. Furthermore, it exhibited exceptional stability in the piezoelectric voltage over time, exceeding the output voltage of the poled pure P(VDF-TrFE) film. Notably, P(VDF_TrFE)/CB composite-based devices can be used in energy harvesting and piezoelectric strain sensing to monitor human motions, which has the potential to positively impact the field of smart wearable devices.
Collapse
Affiliation(s)
- Lavanya Muthusamy
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (B.U.); (S.A.); (G.K.)
| | - Balaadithya Uppalapati
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (B.U.); (S.A.); (G.K.)
| | - Samee Azad
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (B.U.); (S.A.); (G.K.)
| | - Manav Bava
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA;
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (B.U.); (S.A.); (G.K.)
| |
Collapse
|
4
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
5
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Unnithan AR, Sasikala ARK. Biomedical Applications of Electrospun Piezoelectric Nanofibrous Scaffolds. ADVANCES IN POLYMER SCIENCE 2023. [DOI: 10.1007/12_2023_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Fu G, Shi Q, Liang Y, He Y, Xue R, He S, Wu Y, Zhou R. Eu 3+-Doped Electrospun Polyvinylidene Fluoride-Hexafluoropropylene/Graphene Oxide Multilayer Composite Nanofiber for the Fabrication of Flexible Pressure Sensors. ACS OMEGA 2022; 7:23521-23531. [PMID: 35847276 PMCID: PMC9280763 DOI: 10.1021/acsomega.2c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of flexible materials with higher piezoelectric properties and electrostrictive response is of great significance in many applications such as wearable functional devices, flexible sensors, and actuators. In this study, we report an efficient fabrication strategy to construct a highly sensitive (0.72 kPa-1), red light-emitting flexible pressure sensor using electrospun Eu3+-doped polyvinylidene fluoride-hexafluoropropylene/graphene oxide composite nanofibers using a layer-by-layer technology. The high β-phase concentration (96.3%) was achieved from the Eu3+-doped P(VDF-HFP)/GO nanofibers, leading to a high piezoelectricity of the composite nanofibers. We observed that a pressure sensor is enabled to generate an output voltage of 4.5 V. Furthermore, Eu3+-doped P(VDF-HFP)/GO composite nanofiber-based pressure sensors can also be used as an actuator as it has a good electrostrictive effect. At the same time, the nanofiber membrane has excellent ferroelectric properties and good fluorescence properties. These results indicate that this material has great application potential in the fields of photoluminescent fabrics, flexible sensors, soft actuators, and energy storage devices.
Collapse
Affiliation(s)
- Guimao Fu
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Qisong Shi
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Yongri Liang
- State
Key Lab of Metastable Materials Science and Technology, School of
Materials Science and Engineering, Yanshan
University, Hebei 066012, China
| | - Yongqing He
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Rui Xue
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Shifeng He
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Yibo Wu
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| | - Rongji Zhou
- Beijing
Key Lab of Special Elastomeric Composite Materials, College of New
Materials and Chemical Engineering, Beijing
Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
8
|
Bhattacharya D, Bayan S, Mitra RK, Ray SK. 2D WS 2 embedded PVDF nanocomposites for photosensitive piezoelectric nanogenerators with a colossal energy conversion efficiency of ∼25.6. NANOSCALE 2021; 13:15819-15829. [PMID: 34528991 DOI: 10.1039/d1nr03808g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the advantages of low cost, light weight and mechanical flexibility, piezoelectric nanogenerators have the potential for application in renewable energy harvesting from various unexplored sources. Here, we report the demonstration of the record efficiency of flexible piezoelectric nanogenerators (PENG) using composites of polyvinylidene fluoride (PVDF) and chemically exfoliated tungsten disulfide (WS2) nanosheets, which are found to be strongly photosensitive, making them attractive for self-powered optical devices. The presence of two-dimensional (2D) WS2 nanosheets in the PVDF matrix plays a dual role in enhancing the nucleation of the electroactive β-phase as well as inducing strong photosensitivity in the nanocomposite. The PVDF-WS2 composed flexible device is able to produce an enormously high output voltage of ∼116 V (for an impact of 105 kPa) and a piezoelectric energy conversion efficiency of ∼25.6%, which is the highest among the reported values for PVDF-2D material based self-poled piezoelectric nanogenerators. This self-poled piezo-phototronic device exhibits strain-dependent photocurrent at zero bias and exhibits a responsivity of 6.98 × 10-3 A W-1 at 0.75% strain under the illumination of 410 nm. The fabricated PENG is also able to harvest energy from routine human activities (finger tapping, writing on paper, mouse clicking, etc.) and movement of human body parts. These results open up a new horizon in piezo-phototronic materials through the realization of photosensitive multifunctional PENGs, which can be scaled up for fabricating compact, high performance, portable and self-powered wearable electronic devices for smart sensor applications.
Collapse
Affiliation(s)
- Didhiti Bhattacharya
- S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, West Bengal, India.
| | - Sayan Bayan
- S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, West Bengal, India.
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, West Bengal, India.
| | - Samit K Ray
- S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, West Bengal, India.
- Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| |
Collapse
|