1
|
Kittinger C, Stadler J, Kühn KD. Evaluation of Gentamicin Release of PMMA Cements Using Different Methods: HPLC, Elution and Inhibition Zone Testing. Antibiotics (Basel) 2024; 13:754. [PMID: 39200054 PMCID: PMC11350647 DOI: 10.3390/antibiotics13080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: There is an ongoing discussion on the elution efficacy of antibiotic-impregnated cements. Our experiments were intended to clarify if there are differences in the antibiotic elution of HPLC compared with inhibition zone testing using eluates or PMMA discs. (2) Materials and Methods: Two cement brands with different concentrations of the active ingredient were tested in antimicrobial Kirby-Bauer (disc diffusion) assays. Cement platelets were directly applied on the agar plates and their zone of inhibition was measured. In parallel, the platelets were incubated in phosphate buffered saline (PBS) and at distinct points of time transferred into new buffer. At these time points, 50 µL of the bone cement eluates was used for zone of inhibition testing. Standard gentamicin sulfate solutions served as a control in the same test setup. To verify the microbiological investigations, the antibiotic content of the eluates was also measured via high-performance liquid chromatography (HPLC). (3) Results: The experiments with cement eluates showed better differentiable results than the direct application of the cement discs. The results were also comparable to investigations with HPLC and gentamicin sulfate standard solutions. (4) Conclusions: The results of elution rates are influenced by the test system and the period of observation chosen. The microbial test systems reflect the results of HPLC to the same degree and give evidence of the efficacy of the antibiotics. The HPLC tests on eluates were more suitable in representing differences in release characteristics.
Collapse
Affiliation(s)
- Clemens Kittinger
- D&R Insitute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6/III 1, 8036 Graz, Austria;
| | - Johannes Stadler
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| | - Klaus Dieter Kühn
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| |
Collapse
|
2
|
Alqutaibi AY, Baik A, Almuzaini SA, Farghal AE, Alnazzawi AA, Borzangy S, Aboalrejal AN, AbdElaziz MH, Mahmoud II, Zafar MS. Polymeric Denture Base Materials: A Review. Polymers (Basel) 2023; 15:3258. [PMID: 37571151 PMCID: PMC10422349 DOI: 10.3390/polym15153258] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
An ideal denture base must have good physical and mechanical properties, biocompatibility, and esthetic properties. Various polymeric materials have been used to construct denture bases. Polymethyl methacrylate (PMMA) is the most used biomaterial for dentures fabrication due to its favorable properties, which include ease of processing and pigmenting, sufficient mechanical properties, economy, and low toxicity. This article aimed to comprehensively review the current knowledge about denture base materials (DBMs) types, properties, modifications, applications, and construction methods. We searched for articles about denture base materials in PubMed, Scopus, and Embase. Journals covering topics including dental materials, prosthodontics, and restorative dentistry were also combed through. Denture base material variations, types, qualities, applications, and fabrication research published in English were considered. Although PMMA has several benefits and gained popularity as a denture base material, it has certain limitations and cannot be classified as an ideal biomaterial for fabricating dental prostheses. Accordingly, several studies have been performed to enhance the physical and mechanical properties of PMMA by chemical modifications and mechanical reinforcement using fibers, nanofillers, and hybrid materials. This review aimed to update the current knowledge about DBMs' types, properties, applications, and recent developments. There is a need for specific research to improve their biological properties due to patient and dental staff adverse reactions to possibly harmful substances produced during their manufacturing and use.
Collapse
Affiliation(s)
- Ahmed Yaseen Alqutaibi
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
- Prosthodontics Department, College of Dentistry, Ibb University, Ibb 70270, Yemen
| | - Abdulmajeed Baik
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.B.)
| | - Sarah A. Almuzaini
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.B.)
| | - Ahmed E. Farghal
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | - Ahmad Abdulkareem Alnazzawi
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | - Sary Borzangy
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | | | - Mohammed Hosny AbdElaziz
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
- Fixed Prosthodontics Department, Faculty of Dental Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ihab Ismail Mahmoud
- Removable Prosthodontics Department, Faculty of Dental Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, Mallineni S, Sajja R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering (Basel) 2023; 10:327. [PMID: 36978718 PMCID: PMC10044905 DOI: 10.3390/bioengineering10030327] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas of nanotechnology. They are often used in the dental industry because they prevent bacteria from making nanoparticles, oxides, and biofilms. They also stop the metabolism of bacteria. Silver nanoparticles (AgNPs) are a type of zero-dimensional material with different shapes. Dentistry has to keep up with changing patient needs and new technology. Silver nanoparticles (AgNPs) can be used in dentistry for disinfection and preventing infections in the oral cavity. One of the most interesting metallic nanoparticles used in biomedical applications is silver nanoparticles (AgNPs). The dental field has found promising uses for silver nanoparticles (AgNPs) in the elimination of plaque and tartar, as well as the elimination of bacterial and fungal infections in the mouth. The incorporation of AgNPs into dental materials has been shown to significantly enhance patients' oral health, leading to their widespread use. This review focuses on AgNP synthesis, chemical properties, biocompatibility, uses in various dental fields, and biomaterials used in dentistry. With an emphasis on aspects related to the inclusion of silver nanoparticles, this descriptive review paper also intends to address the recent developments of AgNPs in dentistry.
Collapse
Affiliation(s)
- Sreekanth Kumar Mallineni
- Pediatric Dentistry, Dr. Sulaiman Al Habib Hospital, Ar Rayyan, Riyadh 14212, Saudi Arabia
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Srinivasulu Sakhamuri
- Department of Conservative Dentistry & Endodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| | - Sree Lalita Kotha
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Fatmah Nasser Almotawah
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sahana Mallineni
- Department of Periodontology, Krishna Institute of Medical Sciences, Nellore 523001, Andhra Pradesh, India
| | - Rishitha Sajja
- Clinical Data Management, Global Data Management and Centralized Monitoring, Global Development Operations, Bristol Myers Squibb, Pennington, NJ 07922, USA
| |
Collapse
|
4
|
Nanoarchitectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-022-02525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Surface Design Strategies of Polymeric Biomedical Implants for Antibacterial Properties. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Pacho MO, Deeney D, Johnson EA, Bravo BN, Patel K, Latta MA, Belshan MA, Gross SM. Characterization of Ag-Ion Releasing Zeolite Filled 3D Printed Resins. J Funct Biomater 2022; 14:jfb14010007. [PMID: 36662054 PMCID: PMC9861246 DOI: 10.3390/jfb14010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
There has been profound growth in the use of 3D printed materials in dentistry in general, including orthodontics. The opportunity to impart antimicrobial properties to 3D printed parts from existing resins requires the capability of forming a stable colloid incorporating antimicrobial fillers. The objective of this research was to characterize a colloid consisting of a 3D printable resin mixed with Ag-ion releasing zeolites and fumed silica to create 3D printed parts with antiviral properties. The final composite was tested for antiviral properties against SARS-CoV-2 and HIV-1. Antiviral activity was measured in terms of the half-life of SARS-CoV-2 and HIV-1 on the composite surface. The inclusion of the zeolite did not interfere with the kinetics measured on the surface of the ATR crystal. While the depth of cure, measured following ISO4049 guidelines, was reduced from 3.8 mm to 1.4 mm in 5 s, this greatly exceeded the resolution required for 3D printing. The colloid was stable for at least 6 months and the rheological behavior was dependent upon the fumed silica loading. The inclusion of zeolites and fumed silica significantly increased the flexural strength of the composite as measured by a 3 point bend test. The composite released approximately 2500 μg/L of silver ion per gram of composite as determined by potentiometry. There was a significant reduction of the average half-life of SARS-CoV-2 (1.9 fold) and HIV-1 (2.7 fold) on the surface of the composite. The inclusion of Ag-ion releasing zeolites into 3D-printable resin can result in stable colloids that generate composites with improved mechanical properties and antiviral properties.
Collapse
Affiliation(s)
- Marian O. Pacho
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA
| | - Dylan Deeney
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | - Emily A. Johnson
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA
| | - Bryanna N. Bravo
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Kishen Patel
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Mark A. Latta
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA
| | - Michael A. Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | - Stephen M. Gross
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA
- Department of Chemistry, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
- Correspondence:
| |
Collapse
|
7
|
Jitaluk P, Ratanakupt K, Kiatsirirote K. Effect of surface prereacted glass ionomer nanofillers on fluoride release, flexural strength, and surface characteristics of polymethylmethacrylate resin. J ESTHET RESTOR DENT 2022; 34:1272-1281. [PMID: 36169158 DOI: 10.1111/jerd.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Dentures should have proper fluoride release and physical properties. We evaluated how surface prereacted glass ionomer (S-PRG) nanofillers influenced fluoride release, flexural strength, and surface characteristics of polymethylmethacrylate (PMMA) resin. MATERIALS AND METHODS PMMA resin disc (n = 14) and rectangular (n = 5) specimens containing 0, 20 wt% microparticles, and 20 wt% nanoparticles of S-PRG were prepared. Six-disc specimens were examined for surface roughness; eight-disc specimens were immersed in 5 ml of deionized water for 24 h before analyzing the fluoride levels on days 1-3, 12, and 15. They were recharged with 1000 ppm fluoride solution for 24 h and stored in deionized water for five cycles. Fluoride release was examined. The flexural strength of the rectangular specimens was determined using a three-point bending test. Data were analyzed by two-way repeated-measures ANOVA. RESULTS S-PRG nanofiller had the highest fluoride exchange rate and did not significantly change the surface roughness compared with the microparticle and control groups; however, the nanofillers agglomerated and reduced the flexural strength to below 65 MPa. CONCLUSIONS Incorporating 20 wt% nanofillers into resin enhanced the fluoride exchange property greater than microfillers at the same content, but diminished the mechanical properties of the resin. CLINICAL SIGNIFICANCE Incorporating 20 wt% S-PRG nanofillers in resin denture base can improve the fluoride releasing property without affecting the surface roughness.
Collapse
Affiliation(s)
- Poomchai Jitaluk
- Dental Department, Somdejprasangkharach XVII Hospital, Song Phi Nong, Thailand
| | - Kwanchanok Ratanakupt
- Prosthodontics Department, School of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Kritirat Kiatsirirote
- Prosthodontics Department, School of Dentistry, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
8
|
Díez-Pascual AM. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int J Mol Sci 2022; 23:10288. [PMID: 36142201 PMCID: PMC9499310 DOI: 10.3390/ijms231810288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Polymethyl methacrylate (PMMA), a well-known polymer of the methacrylate family, is extensively used in biomedicine, particularly in odontological applications including artificial teeth, dentures and denture bases, obturators, provisional or permanent crowns, and so forth. The exceptional PMMA properties, including aesthetics, inexpensiveness, simple manipulation, low density, and adjustable mechanical properties, make it a perfect candidate in the field of dentistry. However, it presents some deficiencies, including weakness regarding hydrolytic degradation, poor fracture toughness, and a lack of antibacterial activity. To further enhance its properties and solve these drawbacks, different approaches can be performed, including the incorporation of nanofillers. In this regard, different types of metallic nanoparticles, metal oxide nanofillers, and carbon-based nanomaterials have been recently integrated into PMMA matrices with the aim to reduce water absorption and improve their performance, namely their thermal and flexural properties. In this review, recent studies regarding the development of PMMA-based nanocomposites for odontology applications are summarized and future perspectives are highlighted.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Erol I, Cigerci IH, Özkara A, Akyıl D, Aksu M. Synthesis of Moringa oleifera coated silver-containing nanocomposites of a new methacrylate polymer having pendant fluoroarylketone by hydrothermal technique and investigation of thermal, optical, dielectric and biological properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1231-1255. [PMID: 35200112 DOI: 10.1080/09205063.2022.2046986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Firstly, silver nanoparticles were synthesized by green synthesis method from Moringa oleifera extract. Nanocomposites containing newly synthesized methacrylate polymer, poly 2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate (PFPAMA) and Ag nanoparticles from M. oleifera in different mass ratios (1, 3, and 5 wt%) were synthesized using the hydrothermal method. The morphological and structural properties of the materials have been examined by SEM, FTIR, UV, TGA, and XRD techniques. The activation energies (Ea) related to thermal decomposition of the nanocomposites were estimated by the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods by using non-isothermal TGA experiments. The thermal stability, glass transition temperature (Tg), and the thermal decomposition activation energy (Ea) values of nanocomposites were increased by increasing the Ag nanoparticles amount on the composite. The dielectric constant (ε'), the dielectric loss factor (ε″) and ac conductivity of neat PFPAMA and nanocomposites were also measured for the frequency range of 100 Hz to 2 kHz at 25 °C. It was seen that the frequency dependence of the dielectric constant and dielectric loss factor decreased with increasing frequency. The biological activities of nanocomposites against gram-positive (Staphylococcus aureus), gram-negative (Escherichia coli) bacteria and Candida krusei yeast were also tested. The antibacterial effect increased against both bacterial species as the amount of Ag nanoparticles from M. oleifera in the nanocomposites increased. In addition, the wound healing properties of nanocomposites were investigated by the scratch wound test.
Collapse
Affiliation(s)
- Ibrahim Erol
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ibrahim Hakkı Cigerci
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Arzu Özkara
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Dilek Akyıl
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mecit Aksu
- Department of Chemistry, Faculty of Science and Arts, Düzce Universty, Düzce, Turkey
| |
Collapse
|
10
|
Wyszyńska M, Nitsze-Wierzba M, Białożyt-Bujak E, Kasperski J, Skucha-Nowak M. The Problem of Halitosis in Prosthetic Dentistry, and New Approaches to Its Treatment: A Literature Review. J Clin Med 2021; 10:jcm10235560. [PMID: 34884262 PMCID: PMC8658399 DOI: 10.3390/jcm10235560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of this work is a review of recent scientific literature about intra-oral halitosis among patients using dentures. Halitosis is a condition in which an unpleasant smell comes out of the oral cavity, which is caused mainly by volatile sulfur and non-sulfured compounds. The etiology of halitosis may be intra- or extra-oral; in most patients, however, it is due to the activity of microorganisms in the oral cavity. The problem of the occurrence of intra-oral halitosis has accompanied patients for many years. In dental prosthetics, the problem of halitosis occurs in patients using removable or fixed dentures. In both cases, new niches for the development of microorganisms may be created, including those related to intra-oral halitosis. It should be noted that dentures—both fixed and removable—are a foreign body placed in the patient’s oral cavity which, in case of insufficient hygiene, may constitute a reservoir of microorganisms, causing this unpleasant condition. Conventional treatment of intraoral halitosis reduces microbial activity via chemical and/or mechanical action. Currently, the search for new strategies in the treatment of halitosis is in progress. One idea is to use photodynamic therapy, while another is to modify poly(methyl methacrylate) (PMMA) with silver and graphene nanoparticles. Additionally, attempts have been made to combine those two methods. Another unconventional method of treating halitosis is the use of probiotics.
Collapse
Affiliation(s)
- Magdalena Wyszyńska
- Unit of Dental Material Sciences, Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
- Correspondence:
| | - Monika Nitsze-Wierzba
- Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.-W.); (J.K.)
| | - Ewa Białożyt-Bujak
- Unit of Dental Material Sciences, Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
| | - Jacek Kasperski
- Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.-W.); (J.K.)
| | - Małgorzata Skucha-Nowak
- Unit of Dental Propedeutics, Department of Conservative Dentistry with Endodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
| |
Collapse
|
11
|
In vitro testing of silver-containing spacer in periprosthetic infection management. Sci Rep 2021; 11:17261. [PMID: 34446815 PMCID: PMC8390469 DOI: 10.1038/s41598-021-96811-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
Deep infection is a serious complication in endoprosthetic surgery. In correlation to the patient local or systemic compromising factors conservative and surgical proceedings has to be evaluated. Systemic antibiotic therapy is the gold standard in infection management. Implanted silver-coated or silver-containing medical devices have been proven to their antimicrobial effectiveness since the 1990s by several investigators. The outcomes showed that long time implantation could cause damaging of the surrounding tissues, especially of adjacent nerves. The aim of our study was to evaluate the release of silver (I) ions from bone cement mixed with either nanosilver particles (AgNPs), different concentrations of silver sulfate (Ag2SO4) or from pure metallic silver strips. Therefore, we choose two methods: the first, called “static model”, was chosen to evaluate the maximal accumulative concentration of silver (I) ions, with the second, called “dynamic model”, we simulated a continuous reduction of the ions. In an additional test design, the different materials were evaluated for their antimicrobial activity using an agar gel diffusion assay. The outcome showed that neither the addition of 1% (w/w) nanosilver nor 0.1% silver sulfate (w/w) to polymethylmethacrylat bone cement has the ability to release silver (I) ions in a bactericidal/antifungal concentration. However, the results also showed that the addition of 0.5% (w/w) and 1% (w/w) silver sulfate (Ag2SO4) to bone cement is an effective amount of silver for use as a temporary spacer.
Collapse
|
12
|
Association of Graphene Silver Polymethyl Methacrylate (PMMA) with Photodynamic Therapy for Inactivation of Halitosis Responsible Bacteria in Denture Wearers. NANOMATERIALS 2021; 11:nano11071643. [PMID: 34201467 PMCID: PMC8305032 DOI: 10.3390/nano11071643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
(1) Background: Poor hygiene and denture presence in the oral cavity are factors that favor bacterial accumulation, the cause of halitosis and of various oral and general diseases. Aim: This study aimed to evaluate the possibility of inactivating bacteria associated with halitosis in acrylic denture wearers using polymethyl methacrylate resin enhanced with graphene silver nanoparticles and the effect of the resin association with extra oral photodynamic therapy. (2) Methods: Graphene silver nanoparticles in 1 and 2 wt% were added to a commercial acrylic resin powder. Three study groups containing samples from the three different materials were established. The first group was not exposed to the light treatment, and the other two were exposed to red light (laser and light emitting diode) after photosensitizer placement on the disk’s surface. Samples were incubated with Porphyromonas gingivalis and Enterococcus faecalis. (3) Results: For both bacterial strains, inhibition zones were obtained, showing significant differences for the light-treated samples. (4) Conclusions: Denture resins with antibacterial properties associated with extra oral photodynamic therapy exhibited enhanced antibacterial effects. The procedure could be used as a safer and more efficient alternative technique against halitosis and oral infections in denture wearers.
Collapse
|
13
|
Kędzierska M, Potemski P, Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, Grabowska B, Mierzwiński D, Tyliszczak B. The Synthesis Methodology of PEGylated Fe 3O 4@Ag Nanoparticles Supported by Their Physicochemical Evaluation. Molecules 2021; 26:1744. [PMID: 33804671 PMCID: PMC8003814 DOI: 10.3390/molecules26061744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
Many investigations are currently being performed to develop the effective synthesis methodology of magnetic nanoparticles with appropriately functionalized surfaces. Here, the novelty of the presented work involves the preparation of nano-sized PEGylated Fe3O4@Ag particles, i.e., the main purpose was the synthesis of magnetic nanoparticles with a functionalized surface. Firstly, Fe3O4 particles were prepared via the Massart process. Next, Ag+ reduction was conducted in the presence of Fe3O4 particles to form a nanosilver coating. The reaction was performed with arabic gum as a stabilizing agent. Sound energy-using sonication was applied to disintegrate the particles' agglomerates. Next, the PEGylation process aimed at the formation of a coating on the particles' surface using PEG (poly(ethylene glycol)) has been performed. It was proved that the arabic gum limited the agglomeration of nanoparticles, which was probably caused by the steric effect caused by the branched compounds from the stabilizer that adsorbed on the surface of nanoparticles. This effect was also enhanced by the electrostatic repulsions. The process of sonication caused the disintegration of aggregates. Formation of iron (II, III) oxide with a cubic structure was proved by diffraction peaks. Formation of a nanosilver coating on the Fe3O4 nanoparticles was confirmed by diffraction peaks with 2θ values 38.15° and 44.35°. PEG coating on the particles' surface was proven via FT-IR (Fourier Transform Infrared Spectroscopy) analysis. Obtained PEG-nanosilver-coated Fe3O4 nanoparticles may find applications as carriers for targeted drug delivery using an external magnetic field.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, WWCOiT Copernicus Hospital, 90-001 Lodz, Poland; (M.K.); (P.P.)
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, WWCOiT Copernicus Hospital, 90-001 Lodz, Poland; (M.K.); (P.P.)
| | - Anna Drabczyk
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (M.G.); (D.M.)
| | - Sonia Kudłacik-Kramarczyk
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (M.G.); (D.M.)
| | - Magdalena Głąb
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (M.G.); (D.M.)
| | - Beata Grabowska
- Faculty of Foundry Engineering, AGH University of Technology, 23 Reymonta St., 30-059 Krakow, Poland;
| | - Dariusz Mierzwiński
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (M.G.); (D.M.)
| | - Bożena Tyliszczak
- Institute of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (M.G.); (D.M.)
| |
Collapse
|
14
|
Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel) 2020; 12:E2299. [PMID: 33049984 PMCID: PMC7599472 DOI: 10.3390/polym12102299] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
A wide range of polymers are commonly used for various applications in prosthodontics. Polymethyl methacrylate (PMMA) is commonly used for prosthetic dental applications, including the fabrication of artificial teeth, denture bases, dentures, obturators, orthodontic retainers, temporary or provisional crowns, and for the repair of dental prostheses. Additional dental applications of PMMA include occlusal splints, printed or milled casts, dies for treatment planning, and the embedding of tooth specimens for research purposes. The unique properties of PMMA, such as its low density, aesthetics, cost-effectiveness, ease of manipulation, and tailorable physical and mechanical properties, make it a suitable and popular biomaterial for these dental applications. To further improve the properties (thermal properties, water sorption, solubility, impact strength, flexural strength) of PMMA, several chemical modifications and mechanical reinforcement techniques using various types of fibers, nanoparticles, and nanotubes have been reported recently. The present article comprehensively reviews various aspects and properties of PMMA biomaterials, mainly for prosthodontic applications. In addition, recent updates and modifications to enhance the physical and mechanical properties of PMMA are also discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|