Zhang T, Wei Q, Li Z, Meng W, Zhang M, Zhang Z. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023;
240:107632. [PMID:
37329802 DOI:
10.1016/j.cmpb.2023.107632]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND OBJECTIVES
Spectral-domain optical coherence tomography (SD-OCT) is a valuable tool for non-invasive imaging of the retina, allowing the discovery and visualization of localized lesions, the presence of which is associated with eye diseases. The present study introduces X-Net, a weakly supervised deep-learning framework for automated segmentation of paracentral acute middle maculopathy (PAMM) lesions in retinal SD-OCT images. Despite recent advances in the development of automatic methods for clinical analysis of OCT scans, there remains a scarcity of studies focusing on the automated detection of small retinal focal lesions. Additionally, most existing solutions depend on supervised learning, which can be time-consuming and require extensive image labeling, whereas X-Net offers a solution to these challenges. As far as we can determine, no prior study has addressed the segmentation of PAMM lesions in SD-OCT images.
METHODS
This study leverages 133 SD-OCT retinal images, each containing instances of paracentral acute middle maculopathy lesions. A team of eye experts annotated the PAMM lesions in these images using bounding boxes. Then, labeled data were used to train a U-Net that performs pre-segmentation, producing region labels of pixel-level accuracy. To attain a highly-accurate final segmentation, we introduced X-Net, a novel neural network made up of a master and a slave U-Net. During training, it takes the expert annotated, and pixel-level pre-segment annotated images and employs sophisticated strategies to ensure the highest segmentation accuracy.
RESULTS
The proposed method was rigorously evaluated on clinical retinal images excluded from training and achieved an accuracy of 99% with a high level of similarity between the automatic segmentation and expert annotation, as demonstrated by a mean Intersection-over-Union of 0.8. Alternative methods were tested on the same data. Single-stage neural networks proved insufficient for achieving satisfactory results, confirming that more advanced solutions, such as the proposed method, are necessary. We also found that X-Net using Attention U-net for both the pre-segmentation and X-Net arms for the final segmentation shows comparable performance to the proposed method, suggesting that the proposed approach remains a viable solution even when implemented with variants of the classic U-Net.
CONCLUSIONS
The proposed method exhibits reasonably high performance, validated through quantitative and qualitative evaluations. Medical eye specialists have also verified its validity and accuracy. Thus, it could be a viable tool in the clinical assessment of the retina. Additionally, the demonstrated approach for annotating the training set has proven to be effective in reducing the expert workload.
Collapse