Kumar Y, Koul A, Kamini, Woźniak M, Shafi J, Ijaz MF. Automated detection and recognition system for chewable food items using advanced deep learning models.
Sci Rep 2024;
14:6589. [PMID:
38504098 PMCID:
PMC10951243 DOI:
10.1038/s41598-024-57077-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Identifying and recognizing the food on the basis of its eating sounds is a challenging task, as it plays an important role in avoiding allergic foods, providing dietary preferences to people who are restricted to a particular diet, showcasing its cultural significance, etc. In this research paper, the aim is to design a novel methodology that helps to identify food items by analyzing their eating sounds using various deep learning models. To achieve this objective, a system has been proposed that extracts meaningful features from food-eating sounds with the help of signal processing techniques and deep learning models for classifying them into their respective food classes. Initially, 1200 audio files for 20 food items labeled have been collected and visualized to find relationships between the sound files of different food items. Later, to extract meaningful features, various techniques such as spectrograms, spectral rolloff, spectral bandwidth, and mel-frequency cepstral coefficients are used for the cleaning of audio files as well as to capture the unique characteristics of different food items. In the next phase, various deep learning models like GRU, LSTM, InceptionResNetV2, and the customized CNN model have been trained to learn spectral and temporal patterns in audio signals. Besides this, the models have also been hybridized i.e. Bidirectional LSTM + GRU and RNN + Bidirectional LSTM, and RNN + Bidirectional GRU to analyze their performance for the same labeled data in order to associate particular patterns of sound with their corresponding class of food item. During evaluation, the highest accuracy, precision,F1 score, and recall have been obtained by GRU with 99.28%, Bidirectional LSTM + GRU with 97.7% as well as 97.3%, and RNN + Bidirectional LSTM with 97.45%, respectively. The results of this study demonstrate that deep learning models have the potential to precisely identify foods on the basis of their sound by computing the best outcomes.
Collapse