1
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Qiu X, Wang H, Tan X, Fang Z. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction. Comput Biol Med 2024; 173:108376. [PMID: 38552281 DOI: 10.1016/j.compbiomed.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Developing new drugs is costly, time-consuming, and risky. Drug-target affinity (DTA), indicating the binding capability between drugs and target proteins, is a crucial indicator for drug development. Accurately predicting interaction strength between new drug-target pairs by analyzing previous experiments aids in screening potential drug molecules, repurposing them, and developing safe and effective medicines. Existing computational models for DTA prediction rely on strings or single-graph neural networks, lacking consideration of protein structure and molecular semantic information, leading to limited accuracy. Our experiments demonstrate that string-based methods may overlook protein conformations, causing a high root mean square error (RMSE) of 3.584 in affinity due to a lack of spatial context. Single graph networks also underperform on topology features, with a 6% lower confidence interval (CI) for activity classification. Absent semantic information also limits generalization across diverse compounds, resulting in 18% increment in RMSE and 5% in misclassifications within quantifications study, restricting potential drug discovery. To address these limitations, we propose G-K BertDTA, a novel framework for accurate DTA prediction incorporating protein features, molecular semantic features, and molecular structural information. In this proposed model, we represent drugs as graphs, with a GIN employed to learn the molecular topological information. For the extraction of protein structural features, we utilize a DenseNet architecture. A knowledge-based BERT semantic model is incorporated to obtain rich pre-trained semantic embeddings, thereby enhancing the feature information. We extensively evaluated our proposed approach on the publicly available benchmark datasets (i.e., KIBA and Davis), and experimental results demonstrate the promising performance of our method, which consistently outperforms previous state-of-the-art approaches. Code is available at https://github.com/AmbitYuki/G-K-BertDTA.
Collapse
Affiliation(s)
- Xihe Qiu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Haoyu Wang
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaoyu Tan
- INF Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Zhijun Fang
- School of Computer Science and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
3
|
Shahab M, de Farias Morais GC, Akash S, Fulco UL, Oliveira JIN, Zheng G, Akter S. A robust computational quest: Discovering potential hits to improve the treatment of pyrazinamide-resistant Mycobacterium tuberculosis. J Cell Mol Med 2024; 28:e18279. [PMID: 38634203 PMCID: PMC11024510 DOI: 10.1111/jcmm.18279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | | | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Guojun Zheng
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| |
Collapse
|
4
|
Abd El-Haleem AH, Ellafy MA, Abbas SES, El-Ashrey MK. Design, synthesis and anticancer evaluation of some novel 7-hydroxy-4-methyl-3-substituted benzopyran-2-one derivatives. Future Med Chem 2024; 16:417-437. [PMID: 38352986 DOI: 10.4155/fmc-2023-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Aim: 22 derivatives of 7-hydroxy-4-methyl-3-substituted benzopyran-2-one were designed, synthesized and evaluated for their anticancer activity. Materials & methods: The prepared compounds were screened for their cytotoxicity against the MCF-7 breast cancer cell line. The best five were then evaluated against MCF10a to check their safety and then tested for their PI3K and Akt-1 inhibitory action. The best two derivatives were further analyzed through cell cycle analysis, caspase 3/7 activation, increasing BAX level and decreasing BCL-2. Docking and absorption, distribution, metabolism and excretion prediction studies were also performed. Results & conclusion: Compounds 3b, 3c, 3j, 7 and 8 were the most active. Compounds 3c and 8 showed remarkable inhibitory action against PI3K and Akt-1 enzymes, and both are promising candidates for treatment of breast cancer.
Collapse
Affiliation(s)
- Akram H Abd El-Haleem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr University for Science & Technology, P.O. 77, 6th of October City, Giza, Egypt
| | - Manar A Ellafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr University for Science & Technology, P.O. 77, 6 of October City, Giza, Egypt
| | - Safinaz E-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
5
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
6
|
Sahu A, Ahmad S, Imtiyaz K, Kizhakkeppurath Kumaran A, Islam M, Raza K, Easwaran M, Kurukkan Kunnath A, Rizvi MA, Verma S. In-silico and in-vitro study reveals ziprasidone as a potential aromatase inhibitor against breast carcinoma. Sci Rep 2023; 13:16545. [PMID: 37783782 PMCID: PMC10545834 DOI: 10.1038/s41598-023-43789-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Aromatase enzyme plays a fundamental role in the development of estrogen receptors, and due to this functionality, the enzyme has gained significant attention as a therapeutic for reproductive disorders and cancer diseases. The currently employed aromatase inhibitors have severe side effects whereas our novel aromatase inhibitor is more selective and less toxic, therefore has greater potential to be developed as a drug. The research framework of this study is to identify a potent inhibitor for the aromatase target by profiling molecular descriptors of the ligand and to find a functional pocket in the target by docking and MD simulations. For assessing cellular and metabolic activities as indicators of cell viability and cytotoxicity, in-vitro studies were performed by using the colorimetric MTT assay. Aromatase activities were determined by a fluorometric method. Cell morphology was assessed by phase-contrast light microscopy. Flow cytometry and Annexin V-FITC/PI staining assay determined cell cycle distribution and apoptosis. This study reports that CHEMBL708 (Ziprasidone) is the most promising compound that showed excellent aromatase inhibitory activity. By using better drug design methods and experimental studies, our study identified a novel compound that could be effective as a high-potential drug candidate against aromatase enzyme. We conclude that the compound ziprasidone effectively blocks the cell cycle at the G1-S phase and induces cancer cell death. Further, in-vivo studies are vital for developing ziprasidone as an anticancer agent. Lastly, our research outcomes based on the results of the in-silico experiments may pave the way for identifying effective drug candidates for therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumour Biology Lab, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Imtiyaz
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Mojahidul Islam
- Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Murugesh Easwaran
- Nutritional Improvement of Crops, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Asha Kurukkan Kunnath
- Mumbai Research Center, ICAR-Central Institute of Fisheries Technology, Navi Mumbai, 400703, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saurabh Verma
- Tumour Biology Lab, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
7
|
Varshney R, Kumar V, Fatima GN, Saraf SK. Small Heterocyclic Molecules as Anticancer Agents: Design, Synthesis, and Evaluation Against MCF-7 Cell Lines. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Fatriansyah JF, Boanerges AG, Kurnianto SR, Pradana AF, Fadilah, Surip SN. Molecular Dynamics Simulation of Ligands from Anredera cordifolia (Binahong) to the Main Protease ( M pro) of SARS-CoV-2. J Trop Med 2022; 2022:1178228. [PMID: 36457332 PMCID: PMC9708379 DOI: 10.1155/2022/1178228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/03/2023] Open
Abstract
COVID-19 in Indonesia is considered to be entering the endemic phase, and the population is expected to live side by side with the SARS-CoV 2 viruses and their variants. In this study, procyanidin, oleic acid, methyl linoleic acid, and vitexin, four compounds from binahong leaves-tropical/subtropical plant, were examined for their interactions with the major protease (Mpro) of the SARS-CoV 2 virus. Molecular dynamics simulation shows that procyanidin and vitexin have the best docking scores of -9.132 and -8.433, respectively. Molecular dynamics simulation also shows that procyanidin and vitexin have the best Root Mean Square Displacement (RMSD) and Root Mean Square Fluctuation (RMSF) performance due to dominant hydrogen, hydrophobic, and water bridge interactions. However, further strain energy calculation obtained from ligand torsion analyses, procyanidin and vitexin do not conform as much as quercetin as ligand control even though these two ligands have good performance in terms of interaction with the target protein.
Collapse
Affiliation(s)
- Jaka Fajar Fatriansyah
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Ara Gamaliel Boanerges
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Syarafina Ramadhanisa Kurnianto
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Agrin Febrian Pradana
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Fadilah
- Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Salemba Raya, Jakarta 10430, Indonesia
| | - Siti Norasmah Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
9
|
Balakrishnan V, Ganapathy S, Veerasamy V, Subramaniyan S, Mohamed Hussain SA, Duraisamy R. Modifying effects of nerolidol on cell surface glycoconjugates and suppressed inflammation during DMBA-induced oral carcinogenesis: An in vivo and in silico. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ghorbanpour M, Soltani B, Mota A, Jahanbin Sardroodi J, Mehdizadeh Aghdam E, Shayanfar A, Molavi O, Mohammad-Rezaei R, Ebadi-Nahari M, Ziegler CJ. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents. Biometals 2022; 35:1095-1111. [PMID: 36001216 DOI: 10.1007/s10534-022-00426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where (R = Et, Ph), and their Cu (II) complexes were synthesized and characterized by spectroscopic and physicochemical methods. The crystal structure of [Cu(PhNCSPzMe3)2] was determined by X-ray crystallography analysis and the results described a distorted square planar coordination geometry for this complex. Also, the cyclic voltammetry investigations indicated that the synthesized copper complex is an electrochemically active species. Moreover, the cytotoxic activity of all of the twenty synthesized compounds was evaluated using MTT assay against the MCF-7 (human breast carcinoma) cell lines, in vitro. Cu (II) complexes indicate significant cytotoxicity against the MCF-7 cell lines as compared with the free ligands. The docking studies showed that the copper complexes have better interactions with EGFR and CDK2 proteins, compared to the free ligands, and most of the studied compounds have a higher value of binding energy relative to the studied controls. The results of QSAR analysis suggest that dipole moment is in direct correlation with the obtained IC50 values, and it strongly impact the anticancer effects generated by the compounds. Our findings suggest that the developed copper complexes can be good candidates for further evaluations as chemotherapeutic agents in the treatment of cancer.
Collapse
Affiliation(s)
- Monireh Ghorbanpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Behzad Soltani
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran.
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Mohammad-Rezaei
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Mostafa Ebadi-Nahari
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | |
Collapse
|
11
|
Z-Guggulsterone Is a Potential Lead Molecule of Dawa-ul-Kurkum against Hepatocellular Carcinoma. Molecules 2022; 27:molecules27165104. [PMID: 36014345 PMCID: PMC9413334 DOI: 10.3390/molecules27165104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them—viz., Z-guggulsterone, dehydrocostus lactone and crocin—showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.
Collapse
|
12
|
Anticholinesterase Inhibition, Drug-Likeness Assessment, and Molecular Docking Evaluation of Milk Protein-Derived Opioid Peptides for the Control of Alzheimer’s Disease. DAIRY 2022. [DOI: 10.3390/dairy3030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The drug-likeness and pharmacokinetic properties of 23 dairy-protein-derived opioid peptides were studied using SwissADME and ADMETlab in silico tools. All the opioid peptides had poor drug-like properties based on violations of Lipinski’s rule-of-five. Moreover, prediction of their pharmacokinetic properties showed that the peptides had poor intestinal absorption and bioavailability. Following this, two well-known opioid peptides (βb-casomorphin-5, βb-casomorphin-7) from A1 bovine milk and caffeine (positive control) were selected for in silico molecular docking and in vitro inhibition study with two cholinesterase enzyme receptors important for the pathogenesis of Alzheimer’s disease. Both peptides showed higher binding free energies and inhibitory activities to butyrylcholinesterase (BChE) than caffeine, but in vitro binding energy values were lower than those from the docking model. Moreover, the two casomorphins had lower inhibitory properties against acetylcholinesterase (AChE) than caffeine, although the docking model predicted the opposite. At 1 mg/mL concentrations, βb-casomorphin-5 and βb-casomorphin-7 showed promising results in inhibiting both cholinesterases (i.e., respectively 34% and 43% inhibition of AChE, and 67% and 81% inhibition of BChE). These dairy-derived opioid peptides have the potential to treat Alzheimer’s disease via cholinesterase inhibition. However, appropriate derivatization may be required to improve their poor predicted intestinal absorption and bioavailability.
Collapse
|