1
|
Xing X, Li L, Sun M, Yang J, Zhu X, Peng F, Du J, Feng Y. Deep-learning-based 3D super-resolution CT radiomics model: Predict the possibility of the micropapillary/solid component of lung adenocarcinoma. Heliyon 2024; 10:e34163. [PMID: 39071606 PMCID: PMC11279278 DOI: 10.1016/j.heliyon.2024.e34163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Invasive lung adenocarcinoma(ILA) with micropapillary (MPP)/solid (SOL) components has a poor prognosis. Preoperative identification is essential for decision-making for subsequent treatment. This study aims to construct and evaluate a super-resolution(SR) enhanced radiomics model designed to predict the presence of MPP/SOL components preoperatively to provide more accurate and individualized treatment planning. Methods Between March 2018 and November 2023, patients who underwent curative intent ILA resection were included in the study. We implemented a deep transfer learning network on CT images to improve their resolution, resulting in the acquisition of preoperative super-resolution CT (SR-CT) images. Models were developed using radiomic features extracted from CT and SR-CT images. These models employed a range of classifiers, including Logistic Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest, Extra Trees, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). The diagnostic performance of the models was assessed by measuring the area under the curve (AUC). Result A total of 245 patients were recruited, of which 109 (44.5 %) were diagnosed with ILA with MPP/SOL components. In the analysis of CT images, the SVM model exhibited outstanding effectiveness, recording AUC scores of 0.864 in the training group and 0.761 in the testing group. When this SVM approach was used to develop a radiomics model with SR-CT images, it recorded AUCs of 0.904 in the training and 0.819 in the test cohorts. The calibration curves indicated a high goodness of fit, while decision curve analysis (DCA) highlighted the model's clinical utility. Conclusion The study successfully constructed and evaluated a deep learning(DL)-enhanced SR-CT radiomics model. This model outperformed conventional CT radiomics models in predicting MPP/SOL patterns in ILA. Continued research and broader validation are necessary to fully harness and refine the clinical potential of radiomics when combined with SR reconstruction technology.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liangping Li
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Mingxia Sun
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jiahu Yang
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jianzong Du
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yue Feng
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Mahmoodian N, Rezapourian M, Inamdar AA, Kumar K, Fachet M, Hoeschen C. Enabling Low-Dose In Vivo Benchtop X-ray Fluorescence Computed Tomography through Deep-Learning-Based Denoising. J Imaging 2024; 10:127. [PMID: 38921604 PMCID: PMC11204716 DOI: 10.3390/jimaging10060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
X-ray Fluorescence Computed Tomography (XFCT) is an emerging non-invasive imaging technique providing high-resolution molecular-level data. However, increased sensitivity with current benchtop X-ray sources comes at the cost of high radiation exposure. Artificial Intelligence (AI), particularly deep learning (DL), has revolutionized medical imaging by delivering high-quality images in the presence of noise. In XFCT, traditional methods rely on complex algorithms for background noise reduction, but AI holds promise in addressing high-dose concerns. We present an optimized Swin-Conv-UNet (SCUNet) model for background noise reduction in X-ray fluorescence (XRF) images at low tracer concentrations. Our method's effectiveness is evaluated against higher-dose images, while various denoising techniques exist for X-ray and computed tomography (CT) techniques, only a few address XFCT. The DL model is trained and assessed using augmented data, focusing on background noise reduction. Image quality is measured using peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), comparing outcomes with 100% X-ray-dose images. Results demonstrate that the proposed algorithm yields high-quality images from low-dose inputs, with maximum PSNR of 39.05 and SSIM of 0.86. The model outperforms block-matching and 3D filtering (BM3D), block-matching and 4D filtering (BM4D), non-local means (NLM), denoising convolutional neural network (DnCNN), and SCUNet in both visual inspection and quantitative analysis, particularly in high-noise scenarios. This indicates the potential of AI, specifically the SCUNet model, in significantly improving XFCT imaging by mitigating the trade-off between sensitivity and radiation exposure.
Collapse
Affiliation(s)
- Naghmeh Mahmoodian
- Chair of Medical Systems Technology, Institute for Medical Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, 39106 Magdeburg, Germany; (M.R.); (A.A.I.); (K.K.); (M.F.); (C.H.)
| | | | | | | | | | | |
Collapse
|
3
|
Lv B, Liu F, Li Y, Nie J, Gou F, Wu J. Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images. Diagnostics (Basel) 2023; 13:1063. [PMID: 36980371 PMCID: PMC10047640 DOI: 10.3390/diagnostics13061063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive. The manual screening of medical images is time-consuming and laborious, and computer technology is now being introduced to aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI images, high-precision segmentation methods require large computational resources and are difficult to use in developing countries with limited conditions. Therefore, this study proposes an artificial intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement (TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion transformer and a segmentation method with a combined loss function. This solution optimizes diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma MRI images show that our proposed method has a good segmentation effect and performance, with Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as Intersection of Union (IOU) and recall are better than other methods.
Collapse
Affiliation(s)
- Baolong Lv
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Feng Liu
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan 250103, China
| | - Yulin Li
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Jianhua Nie
- Shandong Provincial People’s Government Administration Guarantee Center, Jinan 250011, China;
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images. J Imaging 2022; 8:jimaging8090250. [PMID: 36135415 PMCID: PMC9502178 DOI: 10.3390/jimaging8090250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A dual autoencoder employing separable convolutional layers for image denoising and deblurring is represented. Combining two autoencoders is presented to gain higher accuracy and simultaneously reduce the complexity of neural network parameters by using separable convolutional layers. In the proposed structure of the dual autoencoder, the first autoencoder aims to denoise the image, while the second one aims to enhance the quality of the denoised image. The research includes Gaussian noise (Gaussian blur), Poisson noise, speckle noise, and random impulse noise. The advantages of the proposed neural network are the number reduction in the trainable parameters and the increase in the similarity between the denoised or deblurred image and the original one. The similarity is increased by decreasing the main square error and increasing the structural similarity index. The advantages of a dual autoencoder network with separable convolutional layers are demonstrated by a comparison of the proposed network with a convolutional autoencoder and dual convolutional autoencoder.
Collapse
|
5
|
Akinyelu AA, Zaccagna F, Grist JT, Castelli M, Rundo L. Brain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey. J Imaging 2022; 8:205. [PMID: 35893083 PMCID: PMC9331677 DOI: 10.3390/jimaging8080205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Management of brain tumors is based on clinical and radiological information with presumed grade dictating treatment. Hence, a non-invasive assessment of tumor grade is of paramount importance to choose the best treatment plan. Convolutional Neural Networks (CNNs) represent one of the effective Deep Learning (DL)-based techniques that have been used for brain tumor diagnosis. However, they are unable to handle input modifications effectively. Capsule neural networks (CapsNets) are a novel type of machine learning (ML) architecture that was recently developed to address the drawbacks of CNNs. CapsNets are resistant to rotations and affine translations, which is beneficial when processing medical imaging datasets. Moreover, Vision Transformers (ViT)-based solutions have been very recently proposed to address the issue of long-range dependency in CNNs. This survey provides a comprehensive overview of brain tumor classification and segmentation techniques, with a focus on ML-based, CNN-based, CapsNet-based, and ViT-based techniques. The survey highlights the fundamental contributions of recent studies and the performance of state-of-the-art techniques. Moreover, we present an in-depth discussion of crucial issues and open challenges. We also identify some key limitations and promising future research directions. We envisage that this survey shall serve as a good springboard for further study.
Collapse
Affiliation(s)
- Andronicus A. Akinyelu
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal;
- Department of Computer Science and Informatics, University of the Free State, Phuthaditjhaba 9866, South Africa
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK;
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal;
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Wu J, Xiao P, Huang H, Gou F, Zhou Z, Dai Z. An artificial intelligence multiprocessing scheme for the diagnosis of osteosarcoma MRI images. IEEE J Biomed Health Inform 2022; 26:4656-4667. [PMID: 35727772 DOI: 10.1109/jbhi.2022.3184930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteosarcoma is the most common malignant osteosarcoma, and most developing countries face great challenges in the diagnosis due to the lack of medical resources. Magnetic resonance imaging (MRI) has always been an important tool for the detection of osteosarcoma, but it is a time-consuming and labor-intensive task for doctors to manually identify MRI images. It is highly subjective and prone to misdiagnosis. Existing computer-aided diagnosis methods of osteosarcoma MRI images focus only on accuracy, ignoring the lack of computing resources in developing countries. In addition, the large amount of redundant and noisy data generated during imaging should also be considered. To alleviate the inefficiency of osteosarcoma diagnosis faced by developing countries, this paper proposed an artificial intelligence multiprocessing scheme for pre-screening, noise reduction, and segmentation of osteosarcoma MRI images. For pre-screening, we propose the Slide Block Filter to remove useless images. Next, we introduced a fast non-local means algorithm using integral images to denoise noisy images. We then segmented the filtered and denoised MRI images using a U-shaped network (ETUNet) embedded with a transformer layer, which enhances the functionality and robustness of the traditional U-shaped architecture. Finally, we further optimized the segmented tumor boundaries using conditional random fields. This paper conducted experiments on more than 70,000 MRI images of osteosarcoma from three hospitals in China. The experimental results show that our proposed methods have good results and better performance in pre-screening, noise reduction, and segmentation.
Collapse
|
7
|
Biratu ES, Schwenker F, Ayano YM, Debelee TG. A Survey of Brain Tumor Segmentation and Classification Algorithms. J Imaging 2021; 7:jimaging7090179. [PMID: 34564105 PMCID: PMC8465364 DOI: 10.3390/jimaging7090179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models' performance evaluation metrics.
Collapse
Affiliation(s)
- Erena Siyoum Biratu
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
| | - Friedhelm Schwenker
- Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Taye Girma Debelee
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
- Ethiopian Artificial Intelligence Center, Addis Ababa 40782, Ethiopia;
| |
Collapse
|
8
|
Kubicek J, Strycek M, Cerny M, Penhaker M, Prokop O, Vilimek D. Quantitative and Comparative Analysis of Effectivity and Robustness for Enhanced and Optimized Non-Local Mean Filter Combining Pixel and Patch Information on MR Images of Musculoskeletal System. SENSORS 2021; 21:s21124161. [PMID: 34204477 PMCID: PMC8233799 DOI: 10.3390/s21124161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
In the area of musculoskeletal MR images analysis, the image denoising plays an important role in enhancing the spatial image area for further processing. Recent studies have shown that non-local means (NLM) methods appear to be more effective and robust when compared with conventional local statistical filters, including median or average filters, when Rician noise is presented. A significant limitation of NLM is the fact that thy have the tendency to suppress tiny objects, which may represent clinically important information. For this reason, we provide an extensive quantitative and objective analysis of a novel NLM algorithm, taking advantage of pixel and patch similarity information with the optimization procedure for optimal filter parameters selection to demonstrate a higher robustness and effectivity, when comparing with NLM and conventional local means methods, including average and median filters. We provide extensive testing on variable noise generators with dynamical noise intensity to objectively demonstrate the robustness of the method in a noisy environment, which simulates relevant, variable and real conditions. This work also objectively evaluates the potential and benefits of the application of NLM filters in contrast to conventional local-mean filters. The final part of the analysis is focused on the segmentation performance when an NLM filter is applied. This analysis demonstrates a better performance of tissue identification with the application of smoothing procedure under worsening image conditions.
Collapse
Affiliation(s)
- Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, VSB–Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic; (M.S.); (M.C.); (M.P.); (D.V.)
- Correspondence:
| | - Michal Strycek
- Department of Cybernetics and Biomedical Engineering, VSB–Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic; (M.S.); (M.C.); (M.P.); (D.V.)
| | - Martin Cerny
- Department of Cybernetics and Biomedical Engineering, VSB–Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic; (M.S.); (M.C.); (M.P.); (D.V.)
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, VSB–Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic; (M.S.); (M.C.); (M.P.); (D.V.)
| | - Ondrej Prokop
- MEDIN, a.s., Vlachovicka 619, 59231 Nove Mesto na Morave, Czech Republic;
| | - Dominik Vilimek
- Department of Cybernetics and Biomedical Engineering, VSB–Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic; (M.S.); (M.C.); (M.P.); (D.V.)
| |
Collapse
|