1
|
Fan Z, Xing Y, Gao Y, San Y, Zheng L, Wang Z, Regenstein JM. Soy proteins modified using cavitation jet technology. Int J Biol Macromol 2024; 278:134988. [PMID: 39181369 DOI: 10.1016/j.ijbiomac.2024.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Soy proteins are seen as a promising alternative food source for meat with environmentally friendly properties. The problem is that the functional properties of soy proteins do not meet the needs of the food industry, and some existing modification technologies have adverse effects. Recently, cavitation jet technology (CJT) has been studied because it generates high heat, high pressure, strong shear and strong shock waves. This review summarizes the history and mechanism of cavitation jets. The energy generated during the cavitation jet process can open molecular structures, and the shock waves and microjets generated can pulverize the materials by erosion. The impact of the CJT on the morphology, structure, and functionality of soy proteins is discussed. The impact of combining CJT with other techniques on the production of soy proteins was also reviewed. The modification of proteins using two or more methods with complementary strengths, avoiding the disadvantages of certain techniques, makes the modification of proteins more effective. One of the most prominent effects is the combined treatment of cavitation jets with physical techniques. Finally, the review provides a comprehensive analysis of the application of modified soy proteins in the food industry and highlights promising avenues for future research.
Collapse
Affiliation(s)
- Zhijun Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Beidahuang Green Health Food Co., Ltd., Kiamusze, Heilongjiang 154007, China
| | - Yuejiao Xing
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue San
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA.
| |
Collapse
|
2
|
Zeng L, Huang C, Tang Y, Wang C, Lin S. Tetracycline degradation by dual-frequency ultrasound combined with peroxymonosulfate. ULTRASONICS SONOCHEMISTRY 2024; 106:106886. [PMID: 38692020 PMCID: PMC11077164 DOI: 10.1016/j.ultsonch.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s-1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.
Collapse
Affiliation(s)
- Long Zeng
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Chenyang Huang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yifan Tang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Chenghui Wang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuyu Lin
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Soyama H, Tanaka M, Takiguchi T, Yamamoto M. Development of a Cavitation Generator Mimicking Pistol Shrimp. Biomimetics (Basel) 2024; 9:47. [PMID: 38248621 PMCID: PMC10813229 DOI: 10.3390/biomimetics9010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Pistol shrimp generate cavitation bubbles. Cavitation impacts due to bubble collapses are harmful phenomena, as they cause severe damage to hydraulic machinery such as pumps and valves. However, cavitation impacts can be utilized for mechanical surface treatment to improve the fatigue strength of metallic materials, which is called "cavitation peening". Through conventional cavitation peening, cavitation is generated by a submerged water jet, i.e., a cavitating jet or a pulsed laser. The fatigue strength of magnesium alloy when treated by the pulsed laser is larger than that of the jet. In order to drastically increase the processing efficiency of cavitation peening, the mechanism of pistol shrimp (specifically when used to create a cavitation bubble), i.e., Alpheus randalli, was quantitatively investigated. It was found that a pulsed water jet generates a cavitation bubble when a shrimp snaps its claws. Furthermore, two types of cavitation generators were developed, namely, one that uses a pulsed laser and one that uses a piezo actuator, and this was achieved by mimicking a pistol shrimp. The generation of cavitation bubbles was demonstrated by using both types of cavitation generators: the pulsed laser and the piezo actuator.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Mayu Tanaka
- School of Dentistry, Showa University, Tokyo 145-8515, Japan
| | | | - Matsuo Yamamoto
- School of Dentistry, Showa University, Tokyo 145-8515, Japan
| |
Collapse
|
4
|
Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2024; 102:106738. [PMID: 38150955 PMCID: PMC10765487 DOI: 10.1016/j.ultsonch.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is believed to result from the high acoustic wave energy as well as the formation of cavitation. Cavitation is known to contribute to erosion and to cause damage away from the target, yet the exact contribution and mechanisms of cavitation remain currently unclear. Based on in situ experimental observations, post-exposure microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damage to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest.
Collapse
Affiliation(s)
- Luc Biasiori-Poulanges
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Bratislav Lukić
- European Synchrotron Radiation Facility, CS 40220, Grenoble F-38043, France
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
5
|
Uematsu T, Yahata Y, Ohnishi K, Suzuki S, Kanehira M, Tanaka T, Sudo S, Suresh VV, Saito M. Irrigation with reduced sodium hypochlorite solution concentration using laser-induced cavitation is effective and safe in rat intraradicular biofilm model. AUST ENDOD J 2023; 49:544-553. [PMID: 37489629 DOI: 10.1111/aej.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
This study aimed to investigate the optimal sodium hypochlorite solution (NaOCl) concentration to effectively remove the root canal biofilm without stimulating periradicular inflammation using coronal laser-activated irrigation (CLAI). To compare the efficacy of different NaOCl concentrations combined with CLAI in removing the biofilm, an in vivo intraradicular biofilm rat model was used. Root canals were irrigated using an Er:YAG laser with either 5% or 0.5% NaOCl. Biofilm removal efficacy of CLAI was compared to that of conventional needle irrigation using scanning electron microscopy (SEM) and quantitative polymerase chain reaction (qPCR). Histological observation of CLAI-associated periradicular inflammation was also conducted. In both the 5% and 0.5% CLAI groups, SEM observation showed the opening of the dentin tubules and biofilm removal. qPCR analysis indicated that the residual bacteria counts after cleaning were significantly lower in the 5% and 0.5% CLAI groups than in the conventional needle irrigation and positive control groups (Tukey test, p < 0.05), and no significant difference was observed between the 5% and 0.5% CLAI groups (p > 0.05). Periapical inflammation in the 5% CLAI group revealed the most severe, including significant neutrophilic and lymphocytic infiltration with abscess formation, while only mild vasodilation was observed in the 0.5% CLAI group. CLAI can remove the biofilm independently of chemical action, which avoids the risks associated with high NaOCl concentrations. Therefore, this root canal irrigation technique ensures safety and effectiveness, promising to contribute to new treatment strategies intended to remove intraradicular biofilm.
Collapse
Affiliation(s)
- Takehiro Uematsu
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshio Yahata
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Koyuki Ohnishi
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeto Suzuki
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masafumi Kanehira
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toshinori Tanaka
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susumu Sudo
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Venkata Venkataiah Suresh
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
6
|
Bach T, Barber N, Elterman D, Humphreys M, Bhojani N, Zorn KC, Te A, Chugtai B, Kaplan S. Aquablation Outcomes in Men With LUTS Due to BPH Following Single Versus Multi-pass Treatments. Urology 2022; 169:167-172. [PMID: 35863498 DOI: 10.1016/j.urology.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To determine whether existing data support the use of multiple passes in Aquablation for LUTS due to BPH. METHODS Data were obtained from 2sources. The WATER trial (NCT02505919) is a prospective, multicenter, double-blind, randomized controlled trial of Aquablation vs TURP in prostate volumes of 30 - 80 ml. The WATER II trial (NCT03123250) is a prospective single-arm multicenter trial of Aquablation in prostate volumes of 80-150ml. The number of passes was determined by the procedural data collected and the video recordings of all study cases. RESULTS In total, 127 Aquablation subjects underwent a single pass, 90 underwent multiple passes (80 had 2passes and 10 underwent 3passes), and 65 underwent TURP (in WATER only). Men undergoing 2or more passes with Aquablation had larger prostates but few differences in other baseline parameters, including prostate size range. Compared to a single pass, the use of 2or more passes during Aquablation resulted in lower IPSS scores (by ∼4 points, P = .0002) and lower IPSS QoL scores (by ∼0.7 points, P = .0096) at the later timepoints of 24 and 36 months. Similarly, 36-month Qmax values were higher (by ∼5 ml/sec, P = .0220) in those with 2or more passes than in those with 1pass. There was no statistically significant difference in ejaculatory dysfunction between groups. CONCLUSION Independent of prostate volume, a multiple treatment pass protocol led to improved voiding outcomes and IPSS improvement.
Collapse
Affiliation(s)
- Thorsten Bach
- Chefarzt, Klinik für Urologie, Asklepios Westklinikum Rissen, Hamburg, Germany.
| | - Neil Barber
- Frimley Park Hospital, Frimley Health Foundation Trust, Surrey, UK
| | - Dean Elterman
- University Health Network, University of Toronto, Toronto, Canada
| | | | - Naeem Bhojani
- University of Montreal Hospital Center, Universite de Montreal, Montreal, Québec, Canada
| | - Kevin C Zorn
- University of Montreal Hospital Center, Universite de Montreal, Montreal, Québec, Canada
| | - Alexis Te
- Weill Cornell Medical College, New York Presbyterian, New York, NY
| | - Bilal Chugtai
- Weill Cornell Medical College, New York Presbyterian, New York, NY
| | - Steven Kaplan
- Department of Urology, Mount Sinai Hospital, New York, NY
| |
Collapse
|
7
|
Deggelmann M, Nöpel JA, Rüdiger F, Paustian D, Braeutigam P. Hydrodynamic cavitation for micropollutant degradation in water - Correlation of bisphenol A degradation with fluid mechanical properties. ULTRASONICS SONOCHEMISTRY 2022; 83:105950. [PMID: 35151987 PMCID: PMC8851259 DOI: 10.1016/j.ultsonch.2022.105950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The present work addresses the correlation of bisphenol A (BPA) degradation by hydrodynamic cavitation with the fluid mechanical properties of the cavitating jet in the reactor. The effects of inlet pressure and two orifices were investigated. The fluid mechanics conditions during the reaction were evaluated by optical measurements to determine the jet length, bubble volume, number of bubbles, and bubble size distribution. In addition, chemiluminescence of luminol is used to localize chemically active bubbles due to the generation of hydroxyl radicals in the reactor chamber. The correlation between the rate constants of BPA degradation and the mechanical properties of the liquid is discussed. Here, linear dependencies between the degradation of BPA and the volume expansion of the bubble volume and chemiluminescence are found, allowing prediction of the rate constants and the hydroxyl radicals generated. BPA degradation of 50% was achieved in 30 min with the 1.7 mm nozzle at 25 bar. However, the 1 mm nozzle has been demonstrated to be more energetically efficient, achieving 10% degradation with 30% less power per 100 passes. There is a tendency for the number of small bubbles in the reactor to increase with smaller nozzle and increasing pressure difference.
Collapse
Affiliation(s)
- Manuel Deggelmann
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Julius-Alexander Nöpel
- Institute of Fluid Mechanics, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Frank Rüdiger
- Institute of Fluid Mechanics, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Dirk Paustian
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Patrick Braeutigam
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Michael-Faraday-Straße 1, 07629 Hermsdorf, Germany.
| |
Collapse
|
8
|
Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet. MACHINES 2021. [DOI: 10.3390/machines10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A submerged high-pressure water jet is usually accompanied by severe cavitation phenomenon. An organ pipe nozzle can greatly improve the cavitation performance of the jet, making use of the self-excited oscillation of the flow. In order to study the effect of organ pipe nozzles of different nozzle outlet shapes on cavitation behavior of submerged high-pressure jet, in this paper we build a high-pressure cavitation jet experiment system and carried out a high-speed photography experiment to study cavitation cloud characteristics of a high-pressure submerged jet. Two organ pipe nozzles with and without a whistle were compared. The dynamic characteristics of the cavitation cloud was extracted through the POD method, it was found that the result effectively reflect the dynamic characteristics of the cavitation jet. The reconstruction coefficients of mode-1 obtained by the POD can better reflect the periodic time-frequency characteristics of cavitation development. The effect of the nozzle outlet shape on the cavitation behavior of organ pipe nozzle was analyzed based on unsteady numerical simulation, and it was found that the jet generated by the nozzle with a divergent whistle had a larger vorticity in the shear layer near the outlet. Further, stronger small-scale vortex and much severe cavitation occurred from the nozzle with a divergent whistle.
Collapse
|
9
|
Jasper S, Gradzki DP, Bracke R, Hussong J, Petermann M, Lindken R. Nozzle Cavitation and Rock Erosion Experiments Reveal Insight into the Jet Drilling Process. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah Jasper
- Bochum University of Applied Sciences Institute for Thermodynamics and Fluid Mechanics Am Hochschulcampus 1 44801 Bochum Germany
| | - Daniel P. Gradzki
- Bochum University of Applied Sciences Am Hochschulcampus 1 44801 Bochum Germany
- Fraunhofer IEG Am Hochschulcampus 1 44801 Bochum Germany
| | - Rolf Bracke
- Fraunhofer IEG Am Hochschulcampus 1 44801 Bochum Germany
- Ruhr University Bochum Department of Mechanical Engineering Universitätsstrasse 140 44801 Bochum Germany
| | - Jeanette Hussong
- Technical University of Darmstadt Institute of Fluid Mechanics and Aerodynamics Alarich-Weiss-Strasse 10 64287 Darmstadt Germany
| | - Marcus Petermann
- Ruhr University Bochum Department of Mechanical Engineering Universitätsstrasse 140 44801 Bochum Germany
| | - Ralph Lindken
- Bochum University of Applied Sciences Institute for Thermodynamics and Fluid Mechanics Am Hochschulcampus 1 44801 Bochum Germany
| |
Collapse
|
10
|
Experimental and Analytical Study of under Water Pressure Wave Induced by the Implosion of a Bubble Generated by Focused Laser. SENSORS 2021; 21:s21144800. [PMID: 34300539 PMCID: PMC8309905 DOI: 10.3390/s21144800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
In various domains of material processing, such as surface cleaning and surface treatment, cavitation phenomenon may become an alternative to traditional methods if this phenomenon is well understood. Due to experimental and mathematical difficulties in theoretical models, it is still a challenge to accurately measure the physical mechanism of the fluid/structure interactions. In this study, we verified the feasibility of using polyvinylidene fluoride (PVDF) sensors to quantitatively measure the under-water pressure wave generated by the collapse of a single cavitation bubble. The electrical signal obtained by PVDF can be converted into pressure information only by using the sensor material parameters provided by the supplier. During the conversion process, only the capacitance of the acquisition chain needs to be additionally measured. At the same time, a high-speed video recording system was used to visualize the evolution of the cavitation bubble. The Gilmore analytical model and an associated wave propagation model were used to simulate the pressure peak of the first collapse of the cavitation bubble. This theoretical pressure was compared with the experimental results. The result showed that, for bubbles with a normalized standoff distance γ larger than 5, the PVDF sensor had the ability to quantitatively measure the pressure wave generated by a single cavitation bubble.
Collapse
|
11
|
Laser Cavitation Peening and Its Application for Improving the Fatigue Strength of Welded Parts. METALS 2021. [DOI: 10.3390/met11040531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During conventional submerged laser peening, the impact force induced by laser ablation is used to produce local plastic deformation pits to enhance metallic material properties, such as fatigue performance. However, a bubble, which behaves like a cavitation, is generated after laser ablation, known as “laser cavitation.” On the contrary, in conventional cavitation peening, cavitation is generated by injecting a high-speed water jet into the water, and the impacts of cavitation collapses are utilized for mechanical surface treatment. In the present paper, a mechanical surface treatment mechanism using laser cavitation impact, i.e., “laser cavitation peening”, was investigated, and an improvement in fatigue strength from laser cavitation peening was demonstrated. The impact forces induced by laser ablation and laser cavitation collapse were evaluated with a polyvinylidene fluoride (PVDF) sensor and a submerged shockwave sensor, and the diameter of the laser cavitation was measured by observing a high-speed video taken with a camera. It was revealed that the impact of laser cavitation collapse was larger than that of laser ablation, and the peening effect was closely related to the volume of laser cavitation. Laser cavitation peening improved the fatigue strength of stainless-steel welds.
Collapse
|
12
|
Soyama H. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number. ULTRASONICS SONOCHEMISTRY 2021; 71:105389. [PMID: 33221624 PMCID: PMC7786618 DOI: 10.1016/j.ultsonch.2020.105389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Hydrodynamic cavitation in a Venturi tube produces luminescence, and the luminescence intensity reaches a maximum at a certain cavitation number, which is defined by upstream pressure, downstream pressure, and vapor pressure. The luminescence intensity of hydrodynamic cavitation can be enhanced by optimizing the downstream pressure at a constant upstream pressure condition. However, the reason why the luminescence intensity increases and then decreases with an increase in the downstream pressure remains unclear. In the present study, to clarify the mechanism of the change in the luminescence intensity with cavitation number, the luminescence produced by the hydrodynamic cavitation in a Venturi tube was measured, and the hydrodynamic cavitation was precisely observed using high-speed photography. The sound velocity in the cavitating flow field, which affects the aggressive intensity of the cavitation, was evaluated. The collapse of vortex cavitation was found to be closely related to the luminescence intensity of the hydrodynamic cavitation. A method to estimate the luminescence intensity of the hydrodynamic cavitation considering the sound velocity was developed, and it was demonstrated that the estimated luminescence intensity agrees well with the measured luminescence intensity.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
13
|
Effect of Cavitation Peening on Fatigue Properties in Friction Stir Welded Aluminum Alloy AA5754. METALS 2020. [DOI: 10.3390/met11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Friction stir welding (FSW) is an attractive solid-state joining technique for lightweight metals; however, fatigue properties of FSWed metals are lower than those of bulk metals. A novel mechanical surface treatment using cavitation impact, i.e., cavitation peening, can improve fatigue life and strength by introducing compressive residual stress into the FSWed part. To demonstrate the enhancement of fatigue properties of FSWed metal sheet by cavitation peening, aluminum alloy AA5754 sheet jointed by FSW was treated by cavitation peening using cavitating jet in air and water and tested by a plane bending fatigue test. The surface residual stress of the FSWed part was also evaluated by an X-ray diffraction method. It was concluded that the fatigue life and strength of FSWed specimen were improved by cavitation peening. Whereas the fatigue life at σa = 150 MPa of FSWed specimen was about 1/20 of the bulk sheet, cavitation peening was able to extend the fatigue life of the non-peened FSW specimen by 3.6 times by introducing compressive residual stress into the FSWed part. This is the first paper to demonstrate the improvement of fatigue properties of FSWed metallic sheet by cavitation peening.
Collapse
|