Vrabel J, Stopka O, Palo J, Stopkova M, Droździel P, Michalsky M. Research Regarding Different Types of Headlights on Selected Passenger Vehicles when Using Sensor-Related Equipment.
SENSORS (BASEL, SWITZERLAND) 2023;
23:1978. [PMID:
36850585 PMCID:
PMC9959406 DOI:
10.3390/s23041978]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Statistical surveys show that the majority of traffic accidents occur due to low visibility, highlighting the need to delve into innovative car lighting technologies. A car driver must not only be able to see but also to be seen. The issue of headlight illumination is vital, especially during the dark hours of the night. Therefore, the focus of this article is determining the range of visibility of dipped (low-beam) headlights under specific experimental conditions. We also designed a methodical guideline aimed at identifying the distance at which dipped headlights illuminate the road while a vehicle is in motion. Research conducted on various classes of road confirmed that the Hyundai i40 is best used on higher-class roads, while the Dacia Sandero is better used on lower-class roads due to the shape and spreading out of its light cone. Furthermore, the pros and cons of the distribution of light cones on several classes of road are presented. Sensor-related equipment was also used to investigate light beam afterglow. In particular, an LX-1108 light meter was applied to determine the obstacle illumination intensity, the properties of which enable recording of low lighting values, and a DJI Mavic AIR 2 unmanned aerial vehicle (UAV; drone) was utilized to record the data related to the location of the examined vehicle, as well as light afterglow at night; relevant data evaluation was carried out using Inkscape software.
Collapse