1
|
Lacombe RM, Martigny P, Pelletier D, Barst BD, Guillemette M, Amyot M, Elliott KH, Lavoie RA. Exploring the spatial variation of mercury in the Gulf of St. Lawrence using northern gannets as fish samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172152. [PMID: 38575012 DOI: 10.1016/j.scitotenv.2024.172152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Mercury (Hg) is a ubiquitous and pervasive environmental contaminant with detrimental effects on wildlife, which originates from both natural and anthropogenic sources. Its distribution within ecosystems is influenced by various biogeochemical processes, making it crucial to elucidate the factors driving this variability. To explore these factors, we employed an innovative method to use northern gannets (Morus bassanus) as biological samplers of regurgitated fish in the Gulf of St. Lawrence. We assessed fish total Hg (THg) concentrations in relation to their geographical catch location as well as to pertinent biotic and anthropogenic factors. In small fish species, trophic position, calculated from compound-specific stable nitrogen isotopes in amino acids, emerged as the most influential predictor of THg concentrations. For large fish species, THg concentrations were best explained by δ13C, indicating higher concentrations in inshore habitats. No anthropogenic factors, such as pollution, shipping traffic, or coastal development, were significantly related to THg concentrations in fish. Moreover, previously published THg data in mussels sampled nearby were positively linked with THg concentrations in gannet prey, suggesting consistent mercury distribution across trophic levels in the Gulf of St. Lawrence. Our findings point to habitat-dependent variability in THg concentrations across multiple trophic levels. Our study could have many potential uses in the future, including the identification of vulnerability hotspots for fish populations and their predators, or assessing risk factors for seabirds themselves by using biologically relevant prey.
Collapse
Affiliation(s)
- R M Lacombe
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - P Martigny
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada.
| | - D Pelletier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada; Département de Biologie, Cégep de Rimouski, 60 rue de l'Évêché O, Rimouski, Québec G5L 4H6, Canada.
| | - B D Barst
- Water and Environmental Research Center, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775-5910, USA.
| | - M Guillemette
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada.
| | - M Amyot
- Department of Biological Sciences, University of Montreal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| | - K H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - R A Lavoie
- Science and Technology Branch, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec G1J 0C3, Canada.
| |
Collapse
|
2
|
Rogers J, Bradford MA, O'Driscoll NJ. Coastal Mussel (Mytilus spp.) Soft Tissues as Bioindicators of Methylmercury: Exploring the Relationship Between Condition Index and Methylmercury Concentrations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:60. [PMID: 38602538 DOI: 10.1007/s00128-024-03888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
We investigated total mercury (THg) and methylmercury (MeHg) concentrations in coastal mussels (Mytilus spp.) sampled from the Minas Basin, Bay of Fundy and evaluated the relationship with condition index (CI). THg concentrations were low in sediment (mean THg = 5.15 ± 2.11 ng/g dw; n = 6) and soft tissues (mean THg = 62.3 ± 13.7 ng/g; mean MeHg = 13.2 ± 6.3 ng/g; n = 57). The THg in tissues had no significant relationship with CI (Rs= -0.205, p = 0.126). MeHg in tissues were significantly and negatively correlated with condition index (Rs = -0.361, p = 0.006) indicating that healthier mussels (higher CI) have lower mercury content possibly due to elimination strategies or growth dilution.
Collapse
Affiliation(s)
- Josie Rogers
- Earth and Environmental Science Department, Acadia University, Wolfville Nova Scotia, Canada
| | - Molly A Bradford
- Earth and Environmental Science Department, Acadia University, Wolfville Nova Scotia, Canada.
| | - Nelson J O'Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville Nova Scotia, Canada
| |
Collapse
|
3
|
Barreira J, Araújo DF, Machado W, Ponzevera E. Copper and zinc isotope systematics in different bivalve mollusk species from the French coastline: Implications for biomonitoring. MARINE POLLUTION BULLETIN 2024; 201:116177. [PMID: 38382323 DOI: 10.1016/j.marpolbul.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Zinc (Zn) and copper (Cu) stable isotopic compositions have been analyzed in various species of bivalve mollusks worldwide, but no comprehensive systematic interspecies comparison exists. Thus, we assessed isotope differences between species harvested in emblematic French coastal ecosystems to unveil biologically driven Cu and Zn isotope fractionation patterns. Inter-species isotopic variability of Cu is larger than Zn, with organisms that regulate internal concentrations displaying preferential bioaccumulation of heavy isotopes. The degree of internal isotope fractionation decreases from mussels > clams > oysters, affecting Cu more than Zn. The less pronounced Zn inter-specie variability helps preserve source information more reliably. Spatial analysis of a single oyster species denotes thus an important isotope variability of environmental Zn sources, including natural, anthropogenic and dietary components. Overall, results highlight the importance of considering systematic offset in Cu and Zn isotope values when comparing data from different bivalve species.
Collapse
Affiliation(s)
- João Barreira
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil.
| | - Daniel F Araújo
- Ifremer, CCEM-Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Wilson Machado
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Emmanuel Ponzevera
- Ifremer, CCEM-Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| |
Collapse
|
4
|
Araújo DF, Ponzevera E, Jeong H, Briant N, Le Monier P, Bruzac S, Sireau T, Pellouin-Grouhel A, Knoery J, Brach-Papa C. Seasonal and multi-decadal zinc isotope variations in blue mussels from two sites with contrasting zinc contamination levels. CHEMOSPHERE 2024; 353:141572. [PMID: 38430941 DOI: 10.1016/j.chemosphere.2024.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Zinc (Zn) isotope compositions in soft mussel tissues help identify internal biological processes and track coastal Zn sources in coastal environments, thus aiding in managing marine metal pollution. This study investigated the seasonal and multi-decadal Zn isotope compositions of blue mussels (genus Mytilus) from two French coastal sites with contrasting Zn environmental contamination. Concurrently, we characterized the isotope ratios of sediments and plankton samples at each site to understand the associations between organisms and abiotic compartments. Our primary objective was to determine whether these isotope compositions trace long-term anthropogenic emission patterns or if they reflect short-term biological processes. The multi-decadal isotope profiles of mussels in the Loire Estuary and Toulon Bay showed no isotope variations, implying the enduring stability of the relative contributions of natural and anthropogenic Zn sources over time. At seasonal scales, Zn isotope ratios were also constant; hence, isotope effects related to spawning and body growth were not discernible. The multi-compartmental analysis between the sites revealed that Toulon Bay exhibits a remarkably lower Zn isotope ratio across all studied matrices, suggesting the upward transfer of anthropogenic Zn in the food web. In contrast, the Zn isotope variability observed for sediments and organisms from the Loire Estuary fell within the natural baseline of this element. In both sites, adsorptive geogenic material carrying significant amounts of Zn masks the biological isotope signature of plankton, making it difficult to determine whether the Zn isotope ratio in mussels solely reflects the planktonic diet or if it is further modified by biological homeostasis. In summary, Zn isotope ratios in mussels offer promising avenues for delineating source-specific isotope signatures, contingent upon a comprehensive understanding of the isotope fractionation processes associated with the trophic transfer of this element through the plankton.
Collapse
Affiliation(s)
- Daniel F Araújo
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France.
| | - Emmanuel Ponzevera
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Hyeryeong Jeong
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Pauline Le Monier
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Sandrine Bruzac
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Teddy Sireau
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Anne Pellouin-Grouhel
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Joël Knoery
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Christophe Brach-Papa
- Ifremer, LERPAC- Unité Littoral- Laboratoire Environnement Ressources Provence-Azur-Corse, F-83507, La Seyne-sur-Mer, France
| |
Collapse
|
5
|
Barreira J, Araújo DF, Knoery J, Briant N, Machado W, Grouhel-Pellouin A. The French Mussel Watch Program reveals the attenuation of coastal lead contamination over four decades. MARINE POLLUTION BULLETIN 2024; 199:115975. [PMID: 38160604 DOI: 10.1016/j.marpolbul.2023.115975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The mid-20th century industrial peak caused severe global lead (Pb) marine contamination. Although Europe initiated Pb emission reduction regulations in the 1980s, the short- and long-term impacts remain unclear. This study investigates the evolution of Pb contamination on the French coast through elemental and isotope analysis in oysters and mussels from the French "Mussel Watch" Program. Observations at 114 monitoring stations over four decades have shown decreasing Pb levels in these bivalve mollusks. In 1988, 95 % exceeded the background reference values; this level had dropped to 39 % by 2021. The Pb isotope ratios in bivalves from eight target sites revealed a reduction in bioaccumulated anthropogenic Pb, albeit without complete elimination. The long residence time of legacy Pb combined with inputs from diffuse urban sources likely explains the persistent presence of anthropogenic Pb on the French coast. This study endorses the importance of continuous biomonitoring to evaluate environmental regulations and policies.
Collapse
Affiliation(s)
- João Barreira
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Daniel F Araújo
- Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000 Centre Atlantique, Nantes, France.
| | - Joël Knoery
- Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000 Centre Atlantique, Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000 Centre Atlantique, Nantes, France
| | - Wilson Machado
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Anne Grouhel-Pellouin
- Ifremer, CCEM - Contamination Chimique des Ecosystèmes Marins, F-44000 Centre Atlantique, Nantes, France
| |
Collapse
|
6
|
Araújo DF, Knoery J, Briant N, Vigier N, Ponzevera E. "Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. MARINE POLLUTION BULLETIN 2022; 175:113398. [PMID: 35114550 DOI: 10.1016/j.marpolbul.2022.113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called "non-traditional" isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current "Anthropocene" epoch, metal contamination will continue to threaten marine aquatic ecosystems, and "non-traditional" isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
Collapse
Affiliation(s)
| | | | | | - Nathalie Vigier
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), IMEV, CNRS, Sorbonne Université, France
| | | |
Collapse
|
7
|
Araújo DF, Knoery J, Briant N, Ponzevera E, Chouvelon T, Auby I, Yepez S, Bruzac S, Sireau T, Pellouin-Grouhel A, Akcha F. Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118012. [PMID: 34482248 DOI: 10.1016/j.envpol.2021.118012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters' Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
Collapse
Affiliation(s)
- Daniel F Araújo
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France.
| | - Joël Knoery
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Nicolas Briant
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Emmanuel Ponzevera
- Ifremer, Unité Biogéochimie et Écotoxicologie (BE), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Tiphaine Chouvelon
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France; Observatoire Pelagis, UMS 3462 La Rochelle Université-CNRS, 5 Allée de L'Océan, 17000, La Rochelle, France
| | - Isabelle Auby
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources D'Arcachon (Littoral/LERAR), Quai Du Commandant Silhouette, 33120, Arcachon, France
| | - Santiago Yepez
- Department of Forest Management and Environment, Faculty of Forestry, University of Concepcion, Calle Victoria, 500 Concepción, Bio-Bio, Chile
| | - Sandrine Bruzac
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Teddy Sireau
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Anne Pellouin-Grouhel
- Ifremer, Unité Biogéochimie et Écotoxicologie (BE), Réseau D'Observation de La Contamination Chimique Du Littoral Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire D'Écotoxicologie (BE/LEX), Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| |
Collapse
|
8
|
Zuykov M, Kolyuchkina G, Spiers G, Gosselin M, Archambault P, Schindler M. Pre-exposure to Cu 2+ and CuO NPs leads to infection of caged blue mussels, Mytilus edulis L., by pathogenic microalga: Pilot study in the Lower St. Lawrence Estuary (Québec, Canada). MARINE POLLUTION BULLETIN 2021; 166:112180. [PMID: 33714038 DOI: 10.1016/j.marpolbul.2021.112180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
As evidenced from literature, exposure to non-lethal concentrations of dissolved copper (Cu2+) and copper nanoparticles (CuO NPs) promotes blue mussels susceptibility to various bacterial infections. We study whether pre-exposure (3.5 h) with CuSO4 (100 μg Cu L-1) and CuO NPs (1000 μg Cu L-1) will result in infection of M. edulis L. with pathogenic microalga Coccomyxa sp. under field conditions. In May - September 2019, cages were installed in the site Metis-sur-Mer, St. Lawrence Estuary (QC, Canada) where the native mussel population is known to be infected with the pathogen. Untreated and pre-exposed mussels were grown for up to 130 days. Only the mussels pre-exposed to copper were infected by Coccomyxa. This finding allows proposing that occurrences of Coccomyxa-infected mussels worldwide might have an association with water pollution with xenobiotics. Pre-exposure of caged mussels to copper, as a protocol monitoring for other infectious agents, can be recommended to test.
Collapse
Affiliation(s)
- Michael Zuykov
- School of the Environment, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| | - Galina Kolyuchkina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117 997, Russia
| | - Graeme Spiers
- School of the Environment, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Michel Gosselin
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | | | - Michael Schindler
- Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|