1
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Bartoli F, Corradi L, Hosseini Z, Privitera A, Zuena M, Kumbaric A, Graziani V, Tortora L, Sodo A, Caneva G. In Vitro Viability Tests of New Ecofriendly Nanosystems Incorporating Essential Oils for Long-Lasting Conservation of Stone Artworks. Gels 2024; 10:132. [PMID: 38391462 PMCID: PMC10888044 DOI: 10.3390/gels10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The study explores the application of natural biocides (oregano essential oil and eugenol, directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria (Leptolyngbya sp.) as common pioneer biodeteriogens. Core-shell nanocontainers were built for a controlled release of microbicidal agents, a safe application of chemicals and a prolonged efficacy. The qualitative and quantitative evaluations of biocide efficiency at different doses were periodically performed in vitro, after six scheduled intervals of time (until 100 days). The release kinetics of composite biocide-embedding silica nanocapsules were characterized by the UV-Vis spectroscopy technique. Data showed both promising potential and some limitations. The comparative tests of different biocidal systems shed light on their variable efficacy against microorganisms, highlighting how encapsulation influences the release dynamics and the overall effectiveness. Both the essential oils showed a potential efficacy in protective antifouling coatings for stone artifacts. Ensuring compatibility with materials, understanding their differences in biocidal activity and their release rates becomes essential in tailoring gel, microemulsion or coating products for direct on-site application.
Collapse
Affiliation(s)
- Flavia Bartoli
- Institute of Heritage Science, National Research Council, ISPC-CNR, 00010 Rome, Italy
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| | - Leonora Corradi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, Ravenna Campus, Bologna University, 48121 Ravenna, Italy
| | - Zohreh Hosseini
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| | | | - Martina Zuena
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| | - Alma Kumbaric
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| | - Valerio Graziani
- National Institute of Nuclear Physics (INFN), Roma Tre Section, 00146 Rome, Italy
| | - Luca Tortora
- National Institute of Nuclear Physics (INFN), Roma Tre Section, 00146 Rome, Italy
| | - Armida Sodo
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| | - Giulia Caneva
- Department of Science, University of Roma Tre, 00146 Rome, Italy
| |
Collapse
|
3
|
Sala-Luis A, Oliveira-Urquiri H, Bosch-Roig P, Martín-Rey S. Eco-Sustainable Approaches to Prevent and/or Eradicate Fungal Biodeterioration on Easel Painting. COATINGS 2024; 14:124. [DOI: 10.3390/coatings14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Eliminating and controlling fungal biodeterioration is one of the most important challenges of easel painting conservation. Historically, the pathologies produced by biodeterioration agents had been treated with non-specific products or with biocides specially designed for conservation but risky for human health or the environment due to their toxicity. In recent years, the number of research that studied more respectful solutions for the disinfection of paintings has increased, contributing to society’s efforts to achieve the Sustainable Development Goals (SDGs). Here, an overview of the biodeterioration issues of the easel paintings is presented, critically analyzing chemical and eco-sustainable approaches to prevent or eradicate biodeterioration. Concretely, Essential Oils and light radiations are studied in comparison with the most used chemical biocides in the field, including acids, alcohols, and quaternary ammonium salts. This review describes those strategies’ biocidal mechanisms, efficiency, and reported applications in vitro assays on plates, mockups, and real scale. Benefits and drawbacks are evaluated, including workability, easel painting material alterations, health risks, and environmental sustainability. This review shows innovative and eco-friendly methods from an easel painting conservation perspective, detecting its challenges and opportunities to develop biocontrol strategies to substitute traditional chemical products.
Collapse
Affiliation(s)
- Agustí Sala-Luis
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Haizea Oliveira-Urquiri
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Susana Martín-Rey
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
4
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
5
|
Lobato-Guarnido I, Luzón G, Ríos F, Fernández-Serrano M. Synthesis and Characterization of Environmentally Friendly Chitosan-Arabic Gum Nanoparticles for Encapsulation of Oregano Essential Oil in Pickering Emulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2651. [PMID: 37836292 PMCID: PMC10574744 DOI: 10.3390/nano13192651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
The encapsulation of bioactive agents through the utilization of biodegradable nanoparticles is a topic of considerable scientific interest. In this study, microcapsules composed of chitosan (CS) and Arabic gum (GA) nanoparticles were synthesized, encapsulating oregano essential oil (OEO) through Pickering emulsions and subsequent spray drying. The optimization of hybrid chitosan and Arabic gum (CS-GA) nanoparticle formation was carried out via complex coacervation, followed by an assessment of their behavior during the formation of the emulsion. Measurements of the size, contact angle, and interfacial tension of the formed complexes were conducted to facilitate the development of Pickering emulsions for encapsulating the oil under the most favorable conditions. The chitosan-Arabic gum capsules were physically characterized using scanning electron microscopy and fitted to the Beerkan estimation of soil transfer (BEST) model to determine their size distribution. Finally, the OEO encapsulation efficiency was also determined. The optimum scenario was achieved with the CS-GA 1-2 capsules at a concentration of 2% wt, featuring a contact angle of 89.1 degrees, which is ideal for the formation of oil/water (O/W) emulsions. Capsules of approximately 2.5 μm were obtained, accompanied by an encapsulation efficiency of approximately 60%. In addition, the hybrid nanoparticles that were obtained showed high biodegradability. The data within our study will contribute fundamental insights into CS-GA nanoparticles, and the quantitatively analyzed outcomes presented in this study will hold utility for forthcoming applications in environmentally friendly detergent formulations.
Collapse
Affiliation(s)
- Ismael Lobato-Guarnido
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | - Germán Luzón
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | | | | |
Collapse
|
6
|
Palla F, Bucchini AEA, Giamperi L, Marino P, Raimondo FM. Plant Extracts as Antimicrobial Agents in Sustainable Conservation of Erythrina caffra (Fabaceae) Historical Trees. Antibiotics (Basel) 2023; 12:1098. [PMID: 37508194 PMCID: PMC10376849 DOI: 10.3390/antibiotics12071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microbial colonization plays a relevant role in the biodegradation and biodeterioration of cultural and natural heritage, representing a revealing problem in conservation strategy. In this study, the essential oil (EO) and hydro-alcoholic extract (HAE) of Origanum vulgare L. (Lamiaceae), an aromatic perennial plant, representative of the Mediterranean basin, growing spontaneously and cultivated all over the world, were analysed. Natural products, such as essential oil and hydro-alcoholic extract, have strong antiseptic and antimicrobial properties and are ad hoc applied for the sustainable conservation of Erithryna caffra (Fabaceae). The main taxa revealed in the damaging of these arboreal heritage, are Bacillus sp., Streptomyces sp. and Terribacillus sp. (as bacteria), Alternaria sp., Aspergillus sp. and Chaetomium sp. (as fungi). GS-MS analysis identified carvacrol, thymol and their biosynthetic precursors γ-terpinene and p-cymene, as main components, and the antimicrobial efficiency assayed by in vitro methods (Agar Dish Diffusion, Well Plate Diffusion). In this study, by combining the application/exposure of both HAE and EO, the bacterial and fungal colonies development has been in vitro countered. The results confirm the possible use of plant products as a valid alternative to the traditional synthetic chemical biocides, with full respect to the environment.
Collapse
Affiliation(s)
- Franco Palla
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies/Section of Botany, Anthropology and Zoology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy
| | - Anahì E A Bucchini
- Botanical Garden, Department of Biomolecular Sciences, University of Urbino, Via Bramante 28, 61029 Urbino, Italy
- PLANTA/Center for Research, Documentation, and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Laura Giamperi
- Botanical Garden, Department of Biomolecular Sciences, University of Urbino, Via Bramante 28, 61029 Urbino, Italy
- PLANTA/Center for Research, Documentation, and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Pasquale Marino
- PLANTA/Center for Research, Documentation, and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Francesco M Raimondo
- PLANTA/Center for Research, Documentation, and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| |
Collapse
|
7
|
Geweely NS. New frontiers review of some recent conservation techniques of organic and inorganic archaeological artefacts against microbial deterioration. Front Microbiol 2023; 14:1146582. [PMID: 37007519 PMCID: PMC10060858 DOI: 10.3389/fmicb.2023.1146582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The information on the advances and technology of some recent conservation methods (2020–2023) of organic and inorganic archaeological objects against microbial deterioration is recorded. An outline of comparative new protective methods for conserving plant-origin organic artefacts {Fibers (manuscripts, textile) and wood}, animal-origin organic artefacts (painting, parchment and mummies) and inorganic stone artefacts were investigated. The work not only contributes to the development of safe revolutionary ways for more efficient safe conservation of items of historical and cultural worth but also serves as a significant diagnostic signature for detecting the sorts of microbial identification and incidents in antiques. Biological technologies (environmentally friendly green biocides) are the most used recent, efficient and safe strategy acceptable as alternatives to stop microbial deterioration and prevent any potential interactions between the biological agent and the artefacts. Also, a synergistic effect of combining natural biocides with mechanical cleaning or chemical treatments was suggested. The recommended exploration techniques should be considered for future applications.
Collapse
|
8
|
Diversity and Metabolic Activity of Fungi Causing Biodeterioration of Canvas Paintings. J Fungi (Basel) 2022; 8:jof8060589. [PMID: 35736072 PMCID: PMC9224695 DOI: 10.3390/jof8060589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Research into the biodeteriorative potential of fungi can serve as an indicator of the condition of heritage items. Biodeterioration of canvas paintings as a result of fungal metabolic activity is understudied with respect to both the species diversity and mechanisms involved. This study brings new evidence for the physiology of fungi biodeteriorative capacity of canvas paintings. Twenty-one fungal isolates were recovered from four oil paintings (The Art Museum, Cluj-Napoca) and one gouache painting (private collection), dating from the 18th to 20th centuries. The species, identified based on the molecular markers Internal Transcribed Spacer (ITS), beta-tubulin (tub2), or translation elongation factor 1 (TEF-1), are common colonisers of canvas paintings or indoor environments (e.g., Penicillium spp., Aspergillus spp., Alternaria spp.). Fungi enzymatic profiles were investigated by means of hydrolysable substrates, included in culture media or in test strips, containing components commonly used in canvas paintings. The pigment solubilisation capacity was assessed in culture media for the primary pigments and studied in relation to the organic acid secretion. Caseinases, amylases, gelatinases, acid phosphatase, N-acetyl-β-glucosaminidase, naphthol-AS-BI-phosphohydrolase, and β-glucosidase were found to be the enzymes most likely involved in the processes of substrate colonisation and breakdown of its components. Aureobasidium genus was found to hold the strongest biodeteriorative potential, followed by Cladosporium, Penicillium, Trichoderma, and Aspergillus. Blue pigment solubilisation was detected, occurring as a result of organic acids secretion. Distinct clusters were delineated considering the metabolic activities detected, indicating that fungi specialise in utilisation of certain types of substrates. It was found that both aged and modern artworks are at risk of fungal biodeterioration, due to the enzymatic activities’ diversity and intensity, pigment solubilisation capacity or pigment secretion.
Collapse
|
9
|
Richness of Cladosporium in a tropical bat cave with the description of two new species. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Museal Indoor Air Quality and Public Health: An Integrated Approach for Exhibits Preservation and Ensuring Human Health. SUSTAINABILITY 2022. [DOI: 10.3390/su14042462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The quality of the indoor microclimate in museums is a problem of great interest to the contemporary society, given that it is in close connection with the health and comfort of visitors and employees, as well as with the integrity of the exhibits. Taking into account the fact that museums are places that have a special role in the community’s life and therefore attract a very large number of visitors of all ages, a very important issue is to determine the degree of safety that the indoor microclimate presents. Thus, the quality of the indoor microclimate was investigated inside an iconic museum in Romania, dating back to the 19th century, because pollutants from external or internal sources of the building, generated secondary, often anthropogenic, as a tendency to defend/adapt to climate change (CC), contribute to both local and regional pollution, but also lead to challenges in identifying links between air quality (AQ) and and climate change (CC). The methodology used was based on monitoring the main parameters of the microclimate (temperature, relative humidity and CO2) over a period of between October 2020 and March 2021, 21 weeks, as well as on determining the microbiological contamination of the air and some indoor exhibits located in three different areas of the museum. At the same time, the study aims to identify cheap, easy to implement and non-invasive solutions for removing fungi identified on exhibits for long-term preservation and reducing the risk of various pathologies in humans following prolonged exposure. The results obtained show that the indoor microclimate in the old heritage building favours the development of fungi, which have a high degree of contamination of the air (over 800 CFU/m3) and of the exhibits, representing a potential risk for the health of the visitors and museum workers. Thus, six species of yeast and five different fungi genera were identified in the air, while on the exhibits were individualised six fungi genera, a species of yeast and a bacterium. The most viable solution for cleaning materials, prolonging their lifespan and reducing the risk of disease in humans was represented by the use of essential oils (EO). Three essential oils (lavender, mint and lemon) were applied on an exhibit with five different microorganism genera, and it was observed that they have the ability to inhibit the spores from moulds and bacteria, being a very good alternative to the usual chemical treatments that are used in the cultural heritage field.
Collapse
|
11
|
Editorial for the Special Issue “Microbial Communities in Cultural Heritage and Their Control”. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This editorial focuses on the studies published within the present Special Issue presenting advances in the field of biodeterioration of cultural heritage caused by microbial communities with a particular focus on new methods for their elimination and control.
Collapse
|
12
|
Thymus vulgaris Essential Oil and Hydro-Alcoholic Solutions to Counteract Wooden Artwork Microbial Colonization. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aromatic plants represent a source of natural products with medicinal properties, and are also utilized in the food and pharmaceutical industries. Recently, the need for eco-compatible and non-toxic products, safe for both the environment and human health, have been proposed for the sustainable conservation of historic–artistic artifacts. In this study, in order to counteract microbial colonization (Aspergillus sp., Streptomyces sp., Micrococcus sp.) on wooden artwork surfaces, Thymus vulgaris L. (Lamiaceae) essential oil (EO) and hydro-alcoholic (HA) solutions were applied in a polyphasic approach. The antimicrobial activities of EO and HA solutions were preliminarily assessed by agar disc diffusion (ADD) and well plate diffusion (WPD) in vitro methods, defining the specific concentration useful for bacterial and fungal genera, identified by optical microscopies, in vitro cultures (nutrient or Sabouraud agar), and DNA base molecular biology investigations. Specifically, the microbial patina was directly removed by a hydro-alcoholic solution (while evaluating the potential colorimetric change of the artwork’s surface) combined with exposure to EO volatile compounds, performed in a dedicated “clean chamber”. This study proposes, for the first time, the combined use of two plant extracts to counteract microbial development on wooden artworks, providing supplementary information on these products as bio-agents.
Collapse
|