1
|
Malik SG, Jamil SS, Aziz A, Ullah S, Ullah I, Abohashrh M. High-Precision Skin Disease Diagnosis through Deep Learning on Dermoscopic Images. Bioengineering (Basel) 2024; 11:867. [PMID: 39329609 PMCID: PMC11440112 DOI: 10.3390/bioengineering11090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Dermatological conditions are primarily prevalent in humans and are primarily caused by environmental and climatic fluctuations, as well as various other reasons. Timely identification is the most effective remedy to avert minor ailments from escalating into severe conditions. Diagnosing skin illnesses is consistently challenging for health practitioners. Presently, they rely on conventional methods, such as examining the condition of the skin. State-of-the-art technologies can enhance the accuracy of skin disease diagnosis by utilizing data-driven approaches. This paper presents a Computer Assisted Diagnosis (CAD) framework that has been developed to detect skin illnesses at an early stage. We suggest a computationally efficient and lightweight deep learning model that utilizes a CNN architecture. We then do thorough experiments to compare the performance of shallow and deep learning models. The CNN model under consideration consists of seven convolutional layers and has obtained an accuracy of 87.64% when applied to three distinct disease categories. The studies were conducted using the International Skin Imaging Collaboration (ISIC) dataset, which exclusively consists of dermoscopic images. This study enhances the field of skin disease diagnostics by utilizing state-of-the-art technology, attaining exceptional levels of accuracy, and striving for efficiency improvements. The unique features and future considerations of this technology create opportunities for additional advancements in the automated diagnosis of skin diseases and tailored treatment.
Collapse
Affiliation(s)
- Sadia Ghani Malik
- School of Computing, National University of Computer & Emerging Sciences, Karachi 75030, Pakistan
| | - Syed Shahryar Jamil
- College of Computing and Information Sciences, PAF Karachi Institute of Economics and Technology (PAFKIET), Karachi 74600, Pakistan
| | - Abdul Aziz
- School of Computing, National University of Computer & Emerging Sciences, Karachi 75030, Pakistan
| | - Sana Ullah
- Department of Software Engineering, University of Malakand, Malakand 18800, Pakistan
| | - Inam Ullah
- Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
2
|
Riaz S, Naeem A, Malik H, Naqvi RA, Loh WK. Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:8457. [PMID: 37896548 PMCID: PMC10611214 DOI: 10.3390/s23208457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Skin cancer is considered a dangerous type of cancer with a high global mortality rate. Manual skin cancer diagnosis is a challenging and time-consuming method due to the complexity of the disease. Recently, deep learning and transfer learning have been the most effective methods for diagnosing this deadly cancer. To aid dermatologists and other healthcare professionals in classifying images into melanoma and nonmelanoma cancer and enabling the treatment of patients at an early stage, this systematic literature review (SLR) presents various federated learning (FL) and transfer learning (TL) techniques that have been widely applied. This study explores the FL and TL classifiers by evaluating them in terms of the performance metrics reported in research studies, which include true positive rate (TPR), true negative rate (TNR), area under the curve (AUC), and accuracy (ACC). This study was assembled and systemized by reviewing well-reputed studies published in eminent fora between January 2018 and July 2023. The existing literature was compiled through a systematic search of seven well-reputed databases. A total of 86 articles were included in this SLR. This SLR contains the most recent research on FL and TL algorithms for classifying malignant skin cancer. In addition, a taxonomy is presented that summarizes the many malignant and non-malignant cancer classes. The results of this SLR highlight the limitations and challenges of recent research. Consequently, the future direction of work and opportunities for interested researchers are established that help them in the automated classification of melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Shafia Riaz
- Department of Computer Science, National College of Business Administration & Economics Sub Campus Multan, Multan 60000, Pakistan; (S.R.); (H.M.)
| | - Ahmad Naeem
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan;
| | - Hassaan Malik
- Department of Computer Science, National College of Business Administration & Economics Sub Campus Multan, Multan 60000, Pakistan; (S.R.); (H.M.)
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan;
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Woong-Kee Loh
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Sandhu SS, Gorji HT, Tavakolian P, Tavakolian K, Akhbardeh A. Medical Imaging Applications of Federated Learning. Diagnostics (Basel) 2023; 13:3140. [PMID: 37835883 PMCID: PMC10572559 DOI: 10.3390/diagnostics13193140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since its introduction in 2016, researchers have applied the idea of Federated Learning (FL) to several domains ranging from edge computing to banking. The technique's inherent security benefits, privacy-preserving capabilities, ease of scalability, and ability to transcend data biases have motivated researchers to use this tool on healthcare datasets. While several reviews exist detailing FL and its applications, this review focuses solely on the different applications of FL to medical imaging datasets, grouping applications by diseases, modality, and/or part of the body. This Systematic Literature review was conducted by querying and consolidating results from ArXiv, IEEE Xplorer, and PubMed. Furthermore, we provide a detailed description of FL architecture, models, descriptions of the performance achieved by FL models, and how results compare with traditional Machine Learning (ML) models. Additionally, we discuss the security benefits, highlighting two primary forms of privacy-preserving techniques, including homomorphic encryption and differential privacy. Finally, we provide some background information and context regarding where the contributions lie. The background information is organized into the following categories: architecture/setup type, data-related topics, security, and learning types. While progress has been made within the field of FL and medical imaging, much room for improvement and understanding remains, with an emphasis on security and data issues remaining the primary concerns for researchers. Therefore, improvements are constantly pushing the field forward. Finally, we highlighted the challenges in deploying FL in medical imaging applications and provided recommendations for future directions.
Collapse
Affiliation(s)
- Sukhveer Singh Sandhu
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | - Hamed Taheri Gorji
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
- SafetySpect Inc., 4200 James Ray Dr., Grand Forks, ND 58202, USA
| | - Pantea Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA; (H.T.G.); (P.T.)
| | | |
Collapse
|
4
|
Yaqoob MM, Alsulami M, Khan MA, Alsadie D, Saudagar AKJ, AlKhathami M. Federated Machine Learning for Skin Lesion Diagnosis: An Asynchronous and Weighted Approach. Diagnostics (Basel) 2023; 13:diagnostics13111964. [PMID: 37296816 DOI: 10.3390/diagnostics13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The accurate and timely diagnosis of skin cancer is crucial as it can be a life-threatening disease. However, the implementation of traditional machine learning algorithms in healthcare settings is faced with significant challenges due to data privacy concerns. To tackle this issue, we propose a privacy-aware machine learning approach for skin cancer detection that utilizes asynchronous federated learning and convolutional neural networks (CNNs). Our method optimizes communication rounds by dividing the CNN layers into shallow and deep layers, with the shallow layers being updated more frequently. In order to enhance the accuracy and convergence of the central model, we introduce a temporally weighted aggregation approach that takes advantage of previously trained local models. Our approach is evaluated on a skin cancer dataset, and the results show that it outperforms existing methods in terms of accuracy and communication cost. Specifically, our approach achieves a higher accuracy rate while requiring fewer communication rounds. The results suggest that our proposed method can be a promising solution for improving skin cancer diagnosis while also addressing data privacy concerns in healthcare settings.
Collapse
Affiliation(s)
- Muhammad Mateen Yaqoob
- Department of Computer Science, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Musleh Alsulami
- Information Systems Department, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Muhammad Amir Khan
- Department of Computer Science, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Deafallah Alsadie
- Information Systems Department, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mohammed AlKhathami
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| |
Collapse
|
5
|
Dasaradharami Reddy K, Gadekallu TR. A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:8393990. [PMID: 36909974 PMCID: PMC9995203 DOI: 10.1155/2023/8393990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 03/06/2023]
Abstract
Healthcare is predominantly regarded as a crucial consideration in promoting the general physical and mental health and well-being of people around the world. The amount of data generated by healthcare systems is enormous, making it challenging to manage. Many machine learning (ML) approaches were implemented to develop dependable and robust solutions to handle the data. ML cannot fully utilize data due to privacy concerns. This primarily happens in the case of medical data. Due to a lack of precise clinical data, the application of ML for the same is challenging and may not yield desired results. Federated learning (FL), which is a recent development in ML where the computation is offloaded to the source of data, appears to be a promising solution to this problem. In this study, we present a detailed survey of applications of FL for healthcare informatics. We initiate a discussion on the need for FL in the healthcare domain, followed by a review of recent review papers. We focus on the fundamentals of FL and the major motivations behind FL for healthcare applications. We then present the applications of FL along with recent state of the art in several verticals of healthcare. Then, lessons learned, open issues, and challenges that are yet to be solved are also highlighted. This is followed by future directions that give directions to the prospective researchers willing to do their research in this domain.
Collapse
Affiliation(s)
- K. Dasaradharami Reddy
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Thippa Reddy Gadekallu
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Reviewing Federated Machine Learning and Its Use in Diseases Prediction. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23042112. [PMID: 36850717 PMCID: PMC9958993 DOI: 10.3390/s23042112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Machine learning (ML) has succeeded in improving our daily routines by enabling automation and improved decision making in a variety of industries such as healthcare, finance, and transportation, resulting in increased efficiency and production. However, the development and widespread use of this technology has been significantly hampered by concerns about data privacy, confidentiality, and sensitivity, particularly in healthcare and finance. The "data hunger" of ML describes how additional data can increase performance and accuracy, which is why this question arises. Federated learning (FL) has emerged as a technology that helps solve the privacy problem by eliminating the need to send data to a primary server and collect it where it is processed and the model is trained. To maintain privacy and improve model performance, FL shares parameters rather than data during training, in contrast to the typical ML practice of sending user data during model development. Although FL is still in its infancy, there are already applications in various industries such as healthcare, finance, transportation, and others. In addition, 32% of companies have implemented or plan to implement federated learning in the next 12-24 months, according to the latest figures from KPMG, which forecasts an increase in investment in this area from USD 107 million in 2020 to USD 538 million in 2025. In this context, this article reviews federated learning, describes it technically, differentiates it from other technologies, and discusses current FL aggregation algorithms. It also discusses the use of FL in the diagnosis of cardiovascular disease, diabetes, and cancer. Finally, the problems hindering progress in this area and future strategies to overcome these limitations are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Moshawrab
- Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Mehdi Adda
- Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Abdenour Bouzouane
- Département d’Informatique et de Mathématique, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada
| | - Hussein Ibrahim
- Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada
| | - Ali Raad
- Faculty of Arts & Sciences, Islamic University of Lebanon, Wardaniyeh P.O. Box 30014, Lebanon
| |
Collapse
|
7
|
Deterioration of Electrical Load Forecasting Models in a Smart Grid Environment. SENSORS 2022; 22:s22124363. [PMID: 35746146 PMCID: PMC9227945 DOI: 10.3390/s22124363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023]
Abstract
Smart Grid (S.G.) is a digitally enabled power grid with an automatic capability to control electricity and information between utility and consumer. S.G. data streams are heterogenous and possess a dynamic environment, whereas the existing machine learning methods are static and stand obsolete in such environments. Since these models cannot handle variations posed by S.G. and utilities with different generation modalities (D.G.M.), a model with adaptive features must comply with the requirements and fulfill the demand for new data, features, and modality. In this study, we considered two open sources and one real-world dataset and observed the behavior of ARIMA, ANN, and LSTM concerning changes in input parameters. It was found that no model observed the change in input parameters until it was manually introduced. It was observed that considered models experienced performance degradation and deterioration from 5 to 15% in terms of accuracy relating to parameter change. Therefore, to improve the model accuracy and adapt the parametric variations, which are dynamic in nature and evident in S.G. and D.G.M. environments. The study has proposed a novel adaptive framework to overcome the existing limitations in electrical load forecasting models.
Collapse
|