Fu J, Yan B, Gui S, Fu Y, Xia S. Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: Methane potential and microbial community.
J Environ Sci (China) 2023;
127:133-142. [PMID:
36522047 DOI:
10.1016/j.jes.2022.04.020]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
To improve methane production from sewage sludge (SS), co-digestion of SS and microalgae (MA) was studied and the application of thermo-alkaline pretreatment to MA was evaluated. The results showed that thermo-alkaline pretreatment at 90°C for 120 min on MA was the optimum pretreatment condition. Furthermore, when the volatile solids (VS) ratio of SS and MA was 1:2, the methane yield reached maximum (368.94 mL/g VS). Fourier transform infrared (FT-IR) and thermogravimetric analysis confirmed the synergetic effects of thermo-alkaline pretreated MA on its co-digestion with SS. The analyses of microbial community indicated that Methanobacterium and Methanosarcina were the dominant methanogens during the co-digestion process. However, the relative abundance of Methanosarcina in thermo-alkaline pretreated groups was higher compared to unpretreated groups. The microbial community structure might be affected by thermo-alkaline pretreatment rather than by the MA dosage in the co-digestion.
Collapse