Yaro AS, Maly F, Prazak P. A Survey of the Performance-Limiting Factors of a 2-Dimensional RSS Fingerprinting-Based Indoor Wireless Localization System.
SENSORS (BASEL, SWITZERLAND) 2023;
23:2545. [PMID:
36904748 PMCID:
PMC10007222 DOI:
10.3390/s23052545]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
A receive signal strength (RSS) fingerprinting-based indoor wireless localization system (I-WLS) uses a localization machine learning (ML) algorithm to estimate the location of an indoor user using RSS measurements as the position-dependent signal parameter (PDSP). There are two stages in the system's localization process: the offline phase and the online phase. The offline phase starts with the collection and generation of RSS measurement vectors from radio frequency (RF) signals received at fixed reference locations, followed by the construction of an RSS radio map. In the online phase, the instantaneous location of an indoor user is found by searching the RSS-based radio map for a reference location whose RSS measurement vector corresponds to the user's instantaneously acquired RSS measurements. The performance of the system depends on a number of factors that are present in both the online and offline stages of the localization process. This survey identifies these factors and examines how they impact the overall performance of the 2-dimensional (2-D) RSS fingerprinting-based I-WLS. The effects of these factors are discussed, as well as previous researchers' suggestions for minimizing or mitigating them and future research trends in RSS fingerprinting-based I-WLS.
Collapse