1
|
Le TD, Lee YJ, Park E, Kim MS, Eom TJ, Lee C. Synthetic polarization-sensitive optical coherence tomography using contrastive unpaired translation. Sci Rep 2024; 14:31366. [PMID: 39733058 DOI: 10.1038/s41598-024-82839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed. The CUT model captures birefringence patterns by leveraging patch-wise correlations from unpaired data, which allows learning of the underlying structural features of biological tissues responsible for birefringence. To demonstrate the performance of the proposed approach, three generative models (Pix2pix, CycleGAN, and CUT) were compared on an in vivo dataset of injured mouse tendons over a six-week healing period. CUT outperformed Pix2pix and CycleGAN by producing high-fidelity synthetic PS-OCT images that closely matched the original PS-OCT images. Pearson correlation and two-way ANOVA tests confirmed the superior performance of CUT (p-value < 0.0001) over the comparison models. Additionally, a ResNet-152 classification model was used to assess tissue damage, which achieved an accuracy of up to 90.13% compared to the original PS-OCT images. This research demonstrates that CUT is superior to conventional methods for generating high-quality synthetic PS-OCT images and offers better improvements in most scenarios, in terms of efficiency and image fidelity.
Collapse
Affiliation(s)
- Thanh Dat Le
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Jae Lee
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunwoo Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Myung-Sun Kim
- Department of Orthopedic Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae Joong Eom
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Cogno-Mechatronics Engineering & Optics and Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Gwangju, 58128, Republic of Korea.
| |
Collapse
|
2
|
Hong J, Seong D, Kang D, Kim H, Jang JH, Jeon M, Kim J. Imaging of the vascular distribution of the outer ear using optical coherence tomography angiography for highly accurate positioning of a hearable sensor. APL Bioeng 2024; 8:026113. [PMID: 38799376 PMCID: PMC11126325 DOI: 10.1063/5.0203582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Novel hearable technology is securely and comfortably positioned within the ear canal minimizing inaccuracies caused by accessory movements during activities. Despite extensive research on hearable technologies within the outer ear, there is a lack of research in the field of vascular imaging and quantitative analysis in the outer ear in vivo, which is one of the crucial factors to select the appropriate sensor position. Therefore, in this paper, we introduced optical coherence tomography angiography (OCTA)-based qualitative and quantitative analyses to visualize the inner vasculature of the outer ear to acquire vascular maps for microvascular assessments in vivo. By generating maximum amplitude projection images from three-dimensional blood vascular volume, we identified variations of blood vessel signal caused by the different biological characteristics and curvature of the ear among individuals. The performance of micro-vascular mapping using the proposed method was validated through the comparison and analysis of individual vascular parameters using extracted 20 vascular-related variables. In addition, we extracted pulsatile blood flow signals, demonstrating its potential to provide photoplethysmographic signals and ear blood maps simultaneously. Therefore, our proposed OCTA-based method for ear vascular mapping successfully provides quantitative information about ear vasculature, which is potentially used for determining the position of system-on-chip sensors for health monitoring in hearable devices.
Collapse
Affiliation(s)
- Juyeon Hong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Dongwan Kang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Hyunmo Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, South Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| |
Collapse
|
3
|
Kim H, Kang D, Seong D, Saleah SA, Luna JA, Kim Y, Kim H, Han S, Jeon M, Kim J. Skin pore imaging using spectral-domain optical coherence tomography: a case report. Biomed Eng Lett 2023; 13:729-737. [PMID: 37872989 PMCID: PMC10590360 DOI: 10.1007/s13534-023-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 10/25/2023] Open
Abstract
Sebum is an important component of the skin that has attracted attention in many fields, including dermatology and cosmetics. Pore expansion due to sebum on the skin can lead to various problems. Therefore, it is necessary to analyze the morphological characteristics of sebum. In this study, we used optical coherence tomography (OCT) to evaluate facial sebum areas. We obtained the OCT maximum amplitude projection (MAP) image and a cross-sectional image of skin pores in the facial area. Subsequently, we detected the sebum in skin pores using the detection algorithm of the ImageJ software to quantitatively determine the size of randomly selected pores in the proposed MAP images. Additionally, the pore size was analyzed by acquiring images before and after facial sebum extraction. According to our research, facial sebum can be morphologically described using the OCT system. Since OCT imaging enables specific analysis of skin parameters, including pores and sebum, skin analysis employing OCT could be an effective method for further research.
Collapse
Affiliation(s)
- Hyunmo Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Dongwan Kang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sm Abu Saleah
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jannat Amrin Luna
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Yoonseok Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hayoung Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
- School of Medicine, Institute of Biomedical Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|