1
|
Staropoli A, Di Mola I, Ottaiano L, Cozzolino E, Pironti A, Lombardi N, Nanni B, Mori M, Vinale F, Woo SL, Marra R. Biodegradable Mulch Films and Bioformulations Based on Trichoderma sp. and Seaweed Extract Differentially Affect the Metabolome of Industrial Tomato Plants. J Fungi (Basel) 2024; 10:97. [PMID: 38392769 PMCID: PMC10890107 DOI: 10.3390/jof10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The use of biostimulants and biofilms in agriculture is constantly increasing, as they may support plant growth and productivity by improving nutrient absorption, increasing stress resilience and providing sustainable alternatives to chemical management practices. In this work, two commercial products based on Trichoderma afroharzianum strain T22 (Trianum P®) and a seaweed extract from Ascophyllum nodosum (Phylgreen®) were tested on industrial tomato plants (Solanum lycopersicum var. Heinz 5108F1) in a field experiment. The effects of single and combined applications of microbial and plant biostimulants on plants grown on two different biodegradable mulch films were evaluated in terms of changes in the metabolic profiles of leaves and berries. Untargeted metabolomics analysis by LC-MS Q-TOF revealed the presence of several significantly accumulated compounds, depending on the biostimulant treatment, the mulch biofilm and the tissue examined. Among the differential compounds identified, some metabolites, belonging to alkaloids, flavonoids and their derivatives, were more abundant in tomato berries and leaves upon application of Trichoderma-based product. Interestingly, the biostimulants, when applied alone, similarly affected the plant metabolome compared to control or combined treatments, while significant differences were observed according to the mulch biofilm applied.
Collapse
Affiliation(s)
- Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Piazzale Enrico Fermi, 1, 80055 Naples, Italy
| | - Ida Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Lucia Ottaiano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops, Viale Douhet, 8, 81100 Caserta, Italy
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Bruno Nanni
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Mauro Mori
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Piazzale Enrico Fermi, 1, 80055 Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino, 1, 80137 Naples, Italy
| | - Sheridan Lois Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| |
Collapse
|
2
|
Ferreira NCDF, Ramos MLG, Gatto A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms 2024; 12:237. [PMID: 38399641 PMCID: PMC10893047 DOI: 10.3390/microorganisms12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/25/2024] Open
Abstract
Forest production has great relevance in the Brazilian economy, characterized by several production sectors, including the production of seedlings. With the focus on maximizing the capacity of survival, development, and adaptation of seedlings, Trichoderma is highlighted as a potentially useful genus of microorganisms for promoting growth and higher product quality. In this sense, this review aims to describe the main mechanisms of fungi action in forest seedlings' production. The different species of the genus Trichoderma have specific mechanisms of action, and the current scenario points to more advances in the number of species. The interaction process mediated by different mechanisms of action begins in the communication with plants, from the colonization process. After the interaction, chemical dialogues allow the plant to develop better because, from colonization, the forest seedlings can maximize height and increase shoot and root development. Fungi promote solubilization and availability of nutrients to seedlings, which show numerous benefits to the development. The use of beneficial microorganisms, such as fungi of the genus Trichoderma, has become a sustainable strategy to enhance seedling development, reducing the use of agrochemicals and industrial fertilizers.
Collapse
Affiliation(s)
| | | | - Alcides Gatto
- Department of Forestry Engineering, Faculty of Technology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
3
|
Imran M, Abo-Elyousr KAM, Mousa MAA, Saad MM. Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. FRONTIERS IN PLANT SCIENCE 2023; 14:1192818. [PMID: 37528983 PMCID: PMC10388550 DOI: 10.3389/fpls.2023.1192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 08/03/2023]
Abstract
Introduction Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut, Egypt
| | - Magdi A. A. Mousa
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Maged M. Saad
- DARWIN21, Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Staropoli A, Cuomo P, Salvatore MM, De Tommaso G, Iuliano M, Andolfi A, Tenore GC, Capparelli R, Vinale F. Harzianic Acid Activity against Staphylococcus aureus and Its Role in Calcium Regulation. Toxins (Basel) 2023; 15:toxins15040237. [PMID: 37104175 PMCID: PMC10146698 DOI: 10.3390/toxins15040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium, which can be found, as a commensal microorganism, on the skin surface or in the nasal mucosa of the human population. However, S. aureus may become pathogenic and cause severe infections, especially in hospitalized patients. As an opportunistic pathogen, in fact, S. aureus interferes with the host Ca2+ signaling, favoring the spread of the infection and tissue destruction. The identification of novel strategies to restore calcium homeostasis and prevent the associated clinical outcomes is an emerging challenge. Here, we investigate whether harzianic acid, a bioactive metabolite derived from fungi of the genus Trichoderma, could control S. aureus-induced Ca2+ movements. First, we show the capability of harzianic acid to complex calcium divalent cations, using mass spectrometric, potentiometric, spectrophotometric, and nuclear magnetic resonance techniques. Then, we demonstrate that harzianic acid significantly modulates Ca2+ increase in HaCaT (human keratinocytes) cells incubated with S. aureus. In conclusion, this study suggests harzianic acid as a promising therapeutical alternative against diseases associated with Ca2+ homeostasis alteration.
Collapse
Affiliation(s)
- Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
5
|
Dini I. The commercial importance to develop validated analytical methods to define phytochemical levels in herbal medicinal products. Phytother Res 2022; 36:3675-3677. [PMID: 35537696 DOI: 10.1002/ptr.7485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|