1
|
Cesarini M, Petrucci A, Hotaj E, Venturini G, Liguori R, Sarrocco S. Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat. Microbiol Res 2025; 290:127941. [PMID: 39503079 DOI: 10.1016/j.micres.2024.127941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024]
Abstract
Fusarium head blight (FHB) represents a significant threat for wheat production due to the risk for food security and safety. Despite the huge number of biofungicides on the market, only one is actually available at European level to control Fusarium infections on cereals. The present work aimed to assess the possible use of Trichoderma asperellum strain ICC012 and Trichoderma gamsii strain ICC080 to manage FHB on common wheat Triticum aestivum cv Apogee. Initially, the capability of ICC012 and ICC080 to endophytically colonize wheat roots, a prerequisite very often correlated with the induction of resistance in the host plant, was investigated. It resulted in 100 % of roots internally colonized by the two strains, followed by a significant up-regulation of the defense-related genes encoding for pathogenesis-related protein 1 (pr1), superoxide dismutase (sod), polygalacturonase inhibitor protein 2 (pgip2) and phenylalanine ammonia-lyase 1 (pal1). When the expression of the same genes was investigated in spikes treated at the flowering stage with the two strains, applied individually or co-inoculated, a significant up-regulation of only pal1 was registered 24 hours post inoculation (hpi) in spikes treated with ICC080. To check if a systemic defense response was induced, the expression of the same genes was analyzed in leaves collected 7 and 14 days post inoculation (dpi) of roots, resulting in a significant up-regulation of sod at 7 dpi in leaves collected from plants inoculated with ICC012. Even if induction of resistance is probably not the main mode of action of the two strains, ICC012 and ICC080 applied on spikes at anthesis significantly reduced, in greenhouse conditions, the Disease Incidence (DI) caused by the inoculation mix of F. graminearum, F. culmorum, F. langsethiae and F. sporotrichioides, four of the most important FHB casual agents. This reduction in disease symptoms was observed when the two beneficial strains were applied both individually and co-inoculated on the spikes. Finally, ICC012 and ICC080 demonstrated a good competitive ability for substrate possession. The amount of F. graminearum (as DNA and number of perithecia) on wheat straw pieces was significantly reduced after 6 months of incubation in presence of the two beneficial strains, applied individually and co-inoculated. Being cultural debris used to overwinter, this competitive behavior of ICC012 and ICC080 is an important trait to reduce the potential inoculum of the pathogen. The results collected here lay the groundwork for the use of ICC012 and ICC080 in managing FHB on common wheat.
Collapse
Affiliation(s)
- Marco Cesarini
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Arianna Petrucci
- Department of Agriculture, Food and Environment, University of Pisa, Italy; Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Eliverta Hotaj
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | | | - Riccardo Liguori
- Gowan Novara Isagro S.p.A. - Research Center Renato Ugo, Novara, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Italy.
| |
Collapse
|
2
|
Liu C, Lei L, Zhu J, Chen L, Peng S, Zhang M, Zhang Z, Tang J, Chen Q, Kong L, Zheng Y, Ladera-Carmona M, Kogel KH, Wei Y, Qi P. FgGET3, an ATPase of the GET Pathway, Is Important for the Development and Virulence of Fusarium graminearum. Int J Mol Sci 2024; 25:12172. [PMID: 39596240 PMCID: PMC11594295 DOI: 10.3390/ijms252212172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
GET3 is an ATPase protein that plays a pivotal role in the guided entry of the tail-anchored (GET) pathway. The protein facilitates the targeting and inserting of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) by interacting with a receptor protein complex on the ER. The role of GET3 in various biological processes has been established in yeast, plants, and mammals but not in filamentous fungi. Fusarium graminearum is the major causal agent of Fusarium head blight (FHB), posing a threat to the yield and quality of wheat. In this study, we found that FgGET3 exhibits a high degree of sequence and structural conservation with its homologs across a wide range of organisms. Ectopic expression of FgGET3 in yeast restored the growth defects of the Saccharomyces cerevisiae ScGET3 knock-out mutant. Furthermore, FgGET3 was found to dimerize and localize to the cytoplasm, similar to its homologs in other species. Deletion of FgGET3 in F. graminearum results in decreased fungal growth, fragmented vacuoles, altered abiotic stress responses, reduced conidia production, delayed conidial germination, weakened virulence on wheat spikes and reduced DON production. Collectively, these findings underscore the critical role of FgGET3 in regulating diverse cellular and biological functions essential for the growth and virulence of F. graminearum.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Lirun Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Maria Ladera-Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| |
Collapse
|
3
|
Powell A, Kim SH, Hucl P, Vujanovic V. Insights into Wheat Genotype‒ Sphaerodes mycoparasitica Interaction to Improve Crop Yield and Defence against Fusarium graminearum: An Integration of FHB Biocontrol in Canadian Wheat Breeding Programmes. Pathogens 2024; 13:372. [PMID: 38787224 PMCID: PMC11124274 DOI: 10.3390/pathogens13050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium head blight (FHB) is a major threat to wheat crop production and food security worldwide. The creation of resistant wheat cultivars is an essential component of an integrated strategy against Fusarium graminearum, the primary aetiological agent that causes FHB. The results of this study show that the deployment of proto-cooperative interactions between wheat genotypes and mycoparasitic biocontrol agents (BCAs) can improve crop yield and plant resistance in controlling the devastating effects of FHB on wheat agronomic traits. A Fusarium-specific mycoparasite, Sphaerodes mycoparasitica, was found to be compatible with common and durum wheat hosts, thus allowing the efficient control of F. graminearum infection in plants. Four genotypes of wheat, two common wheat, and two durum wheat cultivars with varying FHB resistance levels were used in this greenhouse study. The BCA treatments decreased FHB symptoms in all four cultivars and improved the agronomic traits such as spike number, spike weight, seed weight, plant biomass, and plant height which are vital to grain yield. Conversely, the F. graminearum 3ADON chemotype treatment decreased the agronomic trait values by up to 44% across cultivars. Spike number, spike weight, and seed weight were the most improved traits by the BCA. A more measurable improvement in agronomic traits was observed in durum wheat cultivars compared to common wheat.
Collapse
Affiliation(s)
- Antonia Powell
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Seon Hwa Kim
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Pierre Hucl
- Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Vladimir Vujanovic
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
4
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Risoli S, Cotrozzi L, Pisuttu C, Nali C. Biocontrol Agents of Fusarium Head Blight in Wheat: A Meta-Analytic Approach to Elucidate Their Strengths and Weaknesses. PHYTOPATHOLOGY 2024; 114:521-537. [PMID: 37831969 DOI: 10.1094/phyto-08-23-0292-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The use of biocontrol agents (BCAs) coping with fungal pathogens causing Fusarium head blight (FHB) is a compelling strategy for disease management, but a better elucidation of their effectiveness is crucial. Meta-analysis is the analysis of the results of multiple studies, which is typically performed to synthesize evidence from many possible sources in a formal probabilistic manner. This meta-analytic study, including 30 pathometric, biometric, physiochemical, genetic, and mycotoxin response variables reported in 56 studies, evidences the BCA effects on FHB in wheat. The effectiveness of BCAs of FHB in wheat in terms of pathogen abundance and disease reductions, biomass and yield conservation, and mycotoxin prevention/control was confirmed. BCAs showed higher efficacy (i) in studies published more recently; (ii) under controlled conditions; (iii) in high susceptible wheat cultivars; (iv) when Fusarium inoculation and BCA treatment did not occur directly on the plant (i.e., at the seed and kernel levels) in terms of disease development and mycotoxin control, and vice versa in terms of biomass conservation; (v) if Fusarium inoculation and BCA treatment occurred by spraying spikes in terms of yield; (vi) at 15 to 21 days post Fusarium inoculation or BCA treatment; and (vii) if they were filamentous fungi. However, BCAs overall were less efficacious than conventional agrochemicals, especially in terms of pathogen abundance and FHB reductions, as well as of mycotoxin prevention/control, although inconsistencies were reported among the investigated moderator variables. This study also highlights the complexity of reaching a good balance among BCA effects, and the need for further research.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Italy
- University School for Advanced Studies IUSS Pavia, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| |
Collapse
|
6
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
7
|
Laraba I, Ward TJ, Cuperlovic-Culf M, Azimi H, Xi P, McCormick SP, Hay WT, Hao G, Vaughan MM. Insights into the Aggressiveness of the Emerging North American Population 3 (NA3) of Fusarium graminearum. PLANT DISEASE 2023; 107:2687-2700. [PMID: 36774561 DOI: 10.1094/pdis-11-22-2698-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.
Collapse
Affiliation(s)
- Imane Laraba
- Oak Ridge Institute for Science and Education fellow, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | | | - Hilda Azimi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Pengcheng Xi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - William T Hay
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| |
Collapse
|
8
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
9
|
Powell AJ, Kim SH, Cordero J, Vujanovic V. Protocooperative Effect of Sphaerodes mycoparasitica Biocontrol and Crop Genotypes on FHB Mycotoxin Reduction in Bread and Durum Wheat Grains Intended for Human and Animal Consumption. Microorganisms 2023; 11:microorganisms11010159. [PMID: 36677451 PMCID: PMC9861577 DOI: 10.3390/microorganisms11010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The occurrence of Fusarium Head Blight (FHB) mycotoxins in wheat grains is a major threat to global food safety and security. Humans and animals are continuously being exposed to Fusarium mycotoxins such as deoxynivalenol (DON) and its acetylated derivatives 3ADON and 15ADON through the ingestion of contaminated food or grain-based diet. In this study, a host-specific mycoparasite biocontrol agent (BCA), Sphaerodes mycoparasitica, significantly reduced FHB mycotoxin occurrence in harvested wheat grains from Fusarium graminearum 3ADON chemotype infected plants in greenhouse. Four genotypes of wheat, two common wheat and two durum wheat cultivars with varying FHB resistance levels were used in this study. Principal Coordinate Analysis (PCoA) using Illumina ITS sequences depicted beta diversity changes in Fusarium species indicating that both plant cultivar and BCA treatments influenced the Fusarium species structure and mycotoxin occurrence in grains. Fusarium graminearum complex (cluster A), F. avenaceum and F. acuminatum (cluster B), and F. proliferatum (cluster C) variants were associated with different FHB mycotoxins based on LC-MS/MS analyses. The predominant FHB mycotoxins measured were DON and its acetylated derivatives 3ADON and 15ADON. The BCA reduced the occurrence of DON in grains of all four cultivars (common wheat: 1000-30,000 µg·kg-1.; durum wheat: 600-1000 µg·kg-1) to levels below the Limit of Quantification (LOQ) of 16 µg·kg-1. A relatively higher concentration of DON was detected in the two common wheat genotypes when compared to the durum wheat genotype; however, the percentage reduction in the wheat genotypes was greater, reaching up to 99% with some S. mycoparasitica treatments. Similarly, a higher reduction in DON was measured in susceptible genotypes than in resistant genotypes. This study's findings underscore the potential of a Fusarium-specific S. mycoparasitica BCA as a safe and promising alternative that can be used in conjunction with other management practices to minimize FHB mycotoxins in cereal grain, food and feed intended for human and animal consumption.
Collapse
|
10
|
ATP-Binding Cassette (ABC) Transporters in Fusarium Specific Mycoparasite Sphaerodes mycoparasitica during Biotrophic Mycoparasitism. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent transcriptomic profiling has revealed importance membrane transporters such as ATP-binding cassette (ABC) transporters in fungal necrotrophic mycoparasites. In this study, RNA-Seq allowed rapid detection of ABC transcripts involved in biotrophic mycoparasitism of Sphaerodes mycoparasitica against the phytopathogenic and mycotoxigenic Fusarium graminearum host, the causal agent of Fusarium head blight (FHB). Transcriptomic analyses of highly expressed S. mycoparasitica genes, and their phylogenetic relationships with other eukaryotic fungi, portrayed the ABC transporters’ evolutionary paths towards biotrophic mycoparasitism. Prior to the in silico phylogenetic analyses, transmission electron microscopy (TEM) was used to confirm the formation of appressorium/haustorium infection structures in S. mycoparasitica during early (1.5 d and 3.5 d) stages of mycoparasitism. Transcripts encoding biotrophy-associated secreted proteins did uncover the enrolment of ABC transporter genes in this specific biocontrol mode of action, while tandem ABC and BUB2 (non-ABC) transcripts seemed to be proper for appressorium development. The next-generation HiSeq transcriptomic profiling of the mycoparasitic hypha samples, revealed 81 transcripts annotated to ABC transporters consisting of a variety of ABC-B (14%), ABC-C (22%), and ABC-G (23%), and to ABC-A, ABC-F, aliphatic sulfonates importer (TC 3.A.1.17.2), BtuF, ribose importer (TC 3.A.1.2.1), and unknown families. The most abundant transcripts belonged to the multidrug resistance exporter (TC 3.A.1.201) subfamily of the ABC-B family, the conjugate transporter (TC 3.A.1.208) subfamily of the ABC-C family, and the pleiotropic drug resistance (PDR) (TC 3.A.1.205) subfamily of the ABC-G family. These findings highlight the significance of ABC transporter genes that control cellular detoxification against toxic substances (e.g., chemical pesticides and mycotoxins) in sustaining a virulence of S. mycoparasitica for effective biotrophic mycoparasitism on the F. graminearum host. The findings of this study provide clues to better understand the biotrophic mycoparasitism of S. mycoparasitica interacting with the Fusarium host, which implies that the ABC transporter group of key proteins is involved in the mycoparasite’s virulence and multidrug resistance to toxic substances including cellular detoxification.
Collapse
|
11
|
Kim SH, Vujanovic V. Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight. BIORESOUR BIOPROCESS 2022; 8:127. [PMID: 34993050 PMCID: PMC8683091 DOI: 10.1186/s40643-021-00479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB.
Collapse
Affiliation(s)
- Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|