1
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
2
|
Logarušić M, Šubar K, Nikolić M, Jurinjak Tušek A, Damjanović A, Radović M, Radojčić Redovniković I, Žnidaršič-Plazl P, Kroutil W, Cvjetko Bubalo M. Harnessing the potential of deep eutectic solvents in biocatalysis: design strategies using CO 2 to formate reduction as a case study. Front Chem 2024; 12:1467810. [PMID: 39525963 PMCID: PMC11543487 DOI: 10.3389/fchem.2024.1467810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Deep eutectic solvents (DESs) have emerged as green solvents with versatile applications, demonstrating significant potential in biocatalysis. They often increase the solubility of poorly water-soluble substrates, serve as smart co-substrates, modulate enzyme stereoselectivity, and potentially improve enzyme activity and stability. Despite these advantages, screening for an optimal DES and determining the appropriate water content for a given biocatalytic reaction remains a complex and time-consuming process, posing a significant challenge. Methods This paper discusses the rational design of DES tailored to a given biocatalytic system through a combination of experimental screening and computational tools, guided by performance targets defined by solvent properties and process constraints. The efficacy of this approach is demonstrated by the reduction of CO2 to formate catalyzed by NADH-dependent formate dehydrogenase (FDH). By systematically analyzing FDH activity and stability, NADH stability (both long-term and short-term stability after solvent saturation with CO2), and CO2 solubility in initially selected glycerol-based DESs, we were able to skillfully guide the DES screening process. Results and discussion Considering trade-offs between experimentally determined performance metrics of DESs, 20% solution of choline chloride:glycerol in phosphate buffer (ChCl:Gly80%B) was identified as the most promising solvent system for a given reaction. Using ChCl:Gly as a co-solvent resulted in an almost 15-fold increase in FDH half-life compared to the reference buffer and stabilized the coenzyme after the addition of CO2. Moreover, the 20% addition of ChCl:Gly to the buffer improved the volumetric productivity of FDH-catalyzed CO2 reduction in a batch system compared to the reference buffer. The exceptional stability of the enzyme in this co-solvent system shows great potential for application in continuous operation, which can significantly improve process productivity. Additionally, based on easily measurable physicochemical solvent properties and molecular descriptors derived from COSMO-RS, QSAR models were developed, which successfully predicted enzyme activity and stability, as well as coenzyme stability in selected solvent systems with DESs.
Collapse
Affiliation(s)
- Marijan Logarušić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Karla Šubar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Maja Nikolić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anja Damjanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Mia Radović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, Field of Excellence BioHealth, BioTechMed Graz, Graz, Austria
| | | |
Collapse
|
3
|
Cysewski P, Jeliński T, Przybyłek M. Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation. Molecules 2024; 29:4894. [PMID: 39459262 PMCID: PMC11510433 DOI: 10.3390/molecules29204894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Deep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was explored using theoretical models based on machine learning. The available solubility data for the selected APIs, comprising a total of 8014 data points, were collected for the available neat solvents, binary solvent mixtures, and DESs. This set was augmented with new measurements for the popular sulfa drugs in dry DESs. The descriptors used in the machine learning protocol were obtained from the σ-profiles of the considered molecules computed within the COSMO-RS framework. A combination of six sets of descriptors and 36 regressors were tested. Taking into account both accuracy and generalization, it was concluded that the best regressor is nuSVR regressor-based predictive models trained using the relative intermolecular interactions and a twelve-step averaged simplification of the relative σ-profiles.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | |
Collapse
|
4
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
5
|
Damjanović A, Logarušić M, Tumir LM, Andreou T, Cvjetko Bubalo M, Radojčić Redovniković I. Enhancing protein stability under stress: osmolyte-based deep eutectic solvents as a biocompatible and robust stabilizing medium for lysozyme under heat and cold shock. Phys Chem Chem Phys 2024; 26:21040-21051. [PMID: 39054918 DOI: 10.1039/d4cp02275k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein. Recognizing the need for a more nuanced understanding of osmolyte-based DES stabilization capabilities under different storage conditions, here we broadened the scope of our osmolyte-based DES experimental screening, and delved deeper into structural changes in the enzyme under these conditions. We subjected lysozyme solutions in DESs based on various kosmotropic osmolytes (TMAO, betaine, sarcosine, DMSP, ectoine, GPC, proline, sorbitol and taurine) paired either with another kosmotropic (glycerol) or with chaotropic osmolyte urea to rigorous conditions: heat shock (at 80 °C) and repetitive freeze-thaw cycles (at -20 and -80 °C). Changes in enzyme activity, colloidal stability, and conformational alterations were then monitored using bioassays, aggregation tests, and spectroscopic techniques (FT-IR and CD). Our results demonstrate the remarkable effectiveness of osmolyte-based DES in stabilizing lysozyme under stress conditions, with sarcosine- and betaine-based DESs containing glycerol as a hydrogen bond donor showing the highest efficacy, even at high enzyme loadings up to 200 mg ml-1. Investigation of the individual and combined effects of the DES components on enzyme stability confirmed the synergistic behavior of the kosmotrope-urea mixtures and the cumulative effects in kosmotrope-glycerol mixtures. Additionally, we have shown that the interplay between the enzyme's active and stable (but inactive) states is highly influenced by the water content in DESs. Finally, toxicity assessments of osmolyte-based DESs using cell lines (Caco-2, HaCaT, and HeLa) revealed no risks to human health.
Collapse
Affiliation(s)
- Anja Damjanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | - Marijan Logarušić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
6
|
Osamede Airouyuwa J, Sivapragasam N, Ali Redha A, Maqsood S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem 2024; 448:139061. [PMID: 38537550 DOI: 10.1016/j.foodchem.2024.139061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/24/2024]
Abstract
Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.
Collapse
Affiliation(s)
- Jennifer Osamede Airouyuwa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nilushni Sivapragasam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Energy and Water Center, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
7
|
Li Y, Sun M, Cao Y, Yu K, Fan Z, Cao Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. CHEMSUSCHEM 2024; 17:e202301953. [PMID: 38409620 DOI: 10.1002/cssc.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The Lithium-ion battery (LIB) is one of the main energy storage equipment. Its cathode material contains Li, Co, and other valuable metals. Therefore, recycling spent LIBs can reduce environmental pollution and resource waste, which is significant for sustainable development. However, traditional metallurgical methods are not environmentally friendly, with high cost and environmental toxicity. Recently, the concept of green chemistry gives rise to environmental and efficient recycling technology, which promotes the transition of recycling solvents from organic solvents to green solvents represented by deep eutectic solvents (DESs). DESs are considered as ideal alternative solvents in extraction processes, attracting great attention due to their low cost, low toxicity, good biodegradability, and high extraction capacity. It is very important to develop the DESs system for LIBs recycling for sustainable development of energy and green economic development of recycling technology. In this work, the applications and research progress of DESs in LIBs recovery are reviewed, and the physicochemical properties such as viscosity, toxicity and regulatory properties are summarized and discussed. In particular, the toxicity data of DESs are collected and analyzed. Finally, the guidance and prospects for future research are put forward, aiming to explore more suitable DESs for recycling valuable metals in batteries.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yanbo Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Zixuan Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
8
|
Cappelluti F, Gontrani L, Mariani A, Galliano S, Carbone M, Bonomo M. Voronoi Tessellation as a Tool for Predicting the Formation of Deep Eutectic Solvents. J Chem Inf Model 2024. [PMID: 38950140 DOI: 10.1021/acs.jcim.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Deep eutectic solvents (DESs) have attracted increasing attention in recent years due to their broad applicability in different fields, but their computer-aided discovery, which avoids a time-consuming trial-and-error investigation, is still lagging. In this paper, a set of nine DESs, composed of choline chloride as a hydrogen-bond acceptor and nine functionalized phenols as hydrogen bond donors, is simulated by using classical molecular dynamics to investigate the possible formation of a DES. The tool of the Voronoi tessellation analysis is employed for producing an intuitive and straightforward representation of the degree of mixing between the different components of the solutions, therefore permitting the definition of a metric quantifying the propensity of the components to produce a uniform solution. The computational findings agree with the experimental results, thus confirming that the Voronoi tessellation analysis can act as a lightweight yet powerful approach for the high-throughput screening of mixtures in the optics of the new DES design.
Collapse
Affiliation(s)
| | - Lorenzo Gontrani
- Startnetics - Department of Chemical Science and Technologies University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Mariani
- Elettra Synchrotron of Trieste, SS per Basovizza, Basovizza, 34149 Trieste, Italy
| | - Simone Galliano
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy
| | - Marilena Carbone
- Startnetics - Department of Chemical Science and Technologies University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy
- Department of Chemistry, University of Rome, La Sapienza, P.le A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Cysewski P, Jeliński T, Przybyłek M, Mai A, Kułak J. Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen. Molecules 2024; 29:2296. [PMID: 38792157 PMCID: PMC11124057 DOI: 10.3390/molecules29102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | | | | | |
Collapse
|
10
|
Zhang D, Liu J, Xu H, Liu H, He YC. Improving saccharification efficiency of corn stover through ferric chloride-deep eutectic solvent pretreatment. BIORESOURCE TECHNOLOGY 2024; 399:130579. [PMID: 38479628 DOI: 10.1016/j.biortech.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
An effective deep eutectic solvent (DES) and Iron(III) chloride (FeCl3) combination pretreatment system was developed to improve the removal efficiency of lignin and hemicellulose from corn stover (CS) and enhance its saccharification. N-(2-hydroxyethyl)ethylenediamine (NE) was selected as the hydrogen-bond-donor for preparing ChCl-based DES (ChCl:NE), and a mixture of ChCl:NE (60 wt%) and FeCl3 (0.5 wt%) was utilized for combination pretreatment of CS at 110 ℃ for 50 min. FeCl3/ChCl:NE effectively removed lignin (87.0 %) and xylan (55.9 %) and the enzymatic hydrolysis activity of FeCl3/ChCl:NE-treated CS was 5.5 times that of CS. The reducing sugar yield of pretreated CS was 98.6 %. FeCl3/ChCl:NE significantly disrupted the crystal structure of cellulose in CS and improved the removal of lignin and hemicellulose, enhancing the conversion of cellulose and hemicellulose into monomeric sugars. Overall, this combination of FeCl3 and DES pretreatment methods has high application potential for the biological refining of lignocellulose.
Collapse
Affiliation(s)
- Danping Zhang
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Jia Liu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Haixu Xu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Hanxiao Liu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
11
|
Simamora A, Timotius KH, Setiawan H, Saputri FA, Putri CR, Aryani D, Ningrum RA, Mun'im A. Ultrasonic-Assisted Extraction of Xanthorrhizol from Curcuma xanthorrhiza Roxb. Rhizomes by Natural Deep Eutectic Solvents: Optimization, Antioxidant Activity, and Toxicity Profiles. Molecules 2024; 29:2093. [PMID: 38731583 PMCID: PMC11085723 DOI: 10.3390/molecules29092093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.
Collapse
Affiliation(s)
- Adelina Simamora
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Kris Herawan Timotius
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Heri Setiawan
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | | | | | - Dewi Aryani
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Ratih Asmana Ningrum
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, West Java, Indonesia
| | - Abdul Mun'im
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| |
Collapse
|
12
|
Zeng X, Li J, Xu L, Deng A, Li J. Development of a flow injection chemiluminescence immunoassay based on DES-mediated CuCo 2O 4 nanoenzyme for ultrasensitive detection of zearalenone in foods. Mikrochim Acta 2024; 191:175. [PMID: 38436786 DOI: 10.1007/s00604-024-06242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for 15 repetitive injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
13
|
Cheng Y, Zhao H, Cui L, Hussain H, Nadolnik L, Zhang Z, Zhao Y, Qin X, Li J, Park JH, Wang D. Ultrasonic-assisted extraction of flavonoids from peanut leave and stem using deep eutectic solvents and its molecular mechanism. Food Chem 2024; 434:137497. [PMID: 37742551 DOI: 10.1016/j.foodchem.2023.137497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Natural bioactive compounds extracted from agricultural by-products have received considerable attentions. Twenty-two kinds of deep eutectic solvents (DESs) with ultrasonic were screened to extract flavonoids from peanut leave and stem. ChCl-acetic acid (ChCl-Aa) with 1:2 M ratio resulted in more effective extraction of flavonoids compared to other solvents The best extraction conditions were found to be at a 27% water content in DES/H2O, for 43 min with 31:1 g/mL liquid/solid ratio, giving 2.980 mg/g dw of flavonoids through the response surface method. SEM showed that ChCl-Aa had a certain dissociation impact on the sample matrix, while 1H NMR analysis revealed the formation of hydrogen bonds between daidzein and ChCl-Aa. Changes in the H-bond length and number were observed by the B3LYP/6-31G (d,p) level of theory to confirm the experimental spectra. This study reveals that DESs are efficient for obtaining value-added products and could applied to other natural products.
Collapse
Affiliation(s)
- Yan Cheng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Chemistry and Chemical Engineering, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Huanzhu Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Liliya Nadolnik
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 230023 Grodno, Belarus
| | - Zhihao Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yan Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiuheng Qin
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinfan Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Daijie Wang
- School of Chemistry and Chemical Engineering, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China.
| |
Collapse
|
14
|
Gabriele F, Casieri C, Spreti N. Natural Deep Eutectic Solvents as Rust Removal Agents from Lithic and Cellulosic Substrates. Molecules 2024; 29:624. [PMID: 38338368 PMCID: PMC10856158 DOI: 10.3390/molecules29030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The peculiar physicochemical features of deep eutectic solvents (DESs), in particular their tunability, make them ideal media for various applications. Despite their ability to solubilize metal oxides, their use as rust removers from valuable substrates has not yet been thoroughly investigated. In this study, we chose three known DESs, consisting of choline chloride and acetic, oxalic or citric acid for evaluating their ability to remove corrosion products from a cellulose-based material as linen fabric and two different lithotypes, as travertine and granite. The artificial staining was achieved by placing a rusty iron grid on their surfaces. The DESs were applied by means of cellulose poultice on the linen fabrics, while on the rusted stone surfaces with a cotton swab. Macro- and microscopic observations, colorimetry and SEM/EDS analysis were employed to ascertain the cleaning effectiveness and the absence of side effects on the samples after treatment. Oxalic acid-based DES was capable of removing rust stains from both stone and cellulose-based samples, while choline chloride/citric acid DES was effective only on stone specimens. The results suggest a new practical application of DESs for the elimination of rust from lithic and cellulosic substrates of precious and artistic value.
Collapse
Affiliation(s)
| | | | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (F.G.); (C.C.)
| |
Collapse
|
15
|
Salgado B, Endara D, Aragón-Tobar CF, de la Torre E, Ullauri L. Recovery of Residual Lead from Automotive Battery Recycling Slag Using Deep Eutectic Solvents. Molecules 2024; 29:394. [PMID: 38257307 PMCID: PMC11154479 DOI: 10.3390/molecules29020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we address the ecological challenges posed by automotive battery recycling, a process notorious for its environmental impact due to the buildup of hazardous waste like foundry slag. We propose a relatively cheap and safe solution for lead removal and recovery from samples of this type of slag. The analysis of TCLP extracts revealed non-compliance with international regulations, showing lead concentrations of up to 5.4% primarily in the form of anglesite (PbSO4), as detected by XRF/XRD. We employed deep eutectic solvents (DES) as leaching agents known for their biodegradability and safety in hydrometallurgical processing. Five operational variables were systematically evaluated: sample type, solvent, concentration, temperature, and time. Using a solvent composed of choline chloride and glycerin in a 2:1 molar ratio, we achieved 95% lead dissolution from acidic samples at 90 °C, with agitation at 470 rpm, a pulp concentration of 5%, and a 5 h duration. Furthermore, we successfully recovered 55% of the lead in an optimized solution using an electrowinning cell. This research demonstrates the ability of DES to decontaminate slag, enabling compliance with regulations, the recovery of valuable metals, and new possibilities for the remaining material.
Collapse
Affiliation(s)
- Bruna Salgado
- Department of Extractive Metallurgy, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, P.O. Box 17-01-2759, Quito 170525, Ecuador; (D.E.); (C.F.A.-T.); (E.d.l.T.); (L.U.)
| | | | | | | | | |
Collapse
|
16
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
17
|
Lobato-Rodríguez Á, Gullón B, Romaní A, Ferreira-Santos P, Garrote G, Del-Río PG. Recent advances in biorefineries based on lignin extraction using deep eutectic solvents: A review. BIORESOURCE TECHNOLOGY 2023; 388:129744. [PMID: 37690487 DOI: 10.1016/j.biortech.2023.129744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Considering the urgent need for alternative biorefinery schemes based on sustainable development, this review aims to summarize the state-of-the-art in the use of deep eutectic solvent pretreatment to fractionate lignocellulose, with a focus on lignin recovery. For that, the key parameters influencing the process are discussed, as well as various strategies to enhance this pretreatment efficiency are explored. Moreover, this review describes the challenges and opportunities associated with the valorization of extraction-derived streams and highlights recent advancements in solvent recovery techniques. Furthermore, the utilization of computational models for process design and optimization is introduced, as the initial attempts at the economic and environmental assessment of this lignocellulosic bioprocess based on deep eutectic solvents. Overall, this review offers a comprehensive perspective on the recent advances in this emerging field and serves as a foundation for further research on the potential integration of deep eutectic pretreatment in sustainable multi-product biorefinery schemes.
Collapse
Affiliation(s)
- Álvaro Lobato-Rodríguez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, Spain.
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, Spain
| | - Pedro Ferreira-Santos
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, Spain
| | - Pablo G Del-Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004 Ourense, Spain; School of Engineering, Stokes Laboratories, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
18
|
Siddiqui SA, Ali Redha A, Salauddin M, Harahap IA, Rupasinghe HPV. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit Rev Anal Chem 2023; 55:139-160. [PMID: 37850880 DOI: 10.1080/10408347.2023.2266846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, Kolkata, India
| | - Iskandar Azmy Harahap
- Research Organization for Health, National Research and Innovation Agency, Jakarta, Indonesia
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
19
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
20
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Lomba L, Polo A, Werner Á, Lafuente C, Giner B. Deep eutectic solvents based on sugars for oral applications. Eur J Pharm Biopharm 2023; 191:103-113. [PMID: 37582410 DOI: 10.1016/j.ejpb.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Solubility is a critical parameter in drug formulation to achieve the desired therapeutical concentration. Most drugs are weak acids or bases and, therefore, exhibit low solubility and poor oral availability. The main aim of this work is the use of Deep Eutectic Systems (DESs) for improving the solubility of drugs in aqueous medium. In this case, we use DESs formed by choline chloride and sugars (xylitol, fructose, glucose and sorbitol) at different proportions of water. These compounds present low toxicity, and thus can be used in syrups or liquid formulations. Different physicochemical properties, such as density, refractive index, and surface tension, were obtained. In addition, a rheological study of the different systems was carried out. Finally, these DESs were applied to analyse the solubility of the following active principles: caffeine (Class I) and furosemide (Class IV) of the Biopharmaceutics Classification System (BCS). The selection of the drugs attends to different reasons. On one hand, we want to develop a new liquid formulation for model drug furosemide and, on the other hand, the study of caffeine, instead, will be used as a model for comparing purposes. Solubility results show that the systems that best solubilize caffeine are those with the highest water content; however, they do not reach the levels of solubility of pure water. On the other hand, for furosemide, a great increase in solubility was observed, especially for systems formed by xylitol and, fundamentally, in the system with the lowest water content. Obtaining an increase in solubility of up to 4530 times. These systems provide an opportunity to improve the formulation of drugs in the liquid medium of active ingredients that are poorly soluble in an aqueous medium.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Alejandra Polo
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Álvaro Werner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Carlos Lafuente
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain; Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
| |
Collapse
|
22
|
Abranches DO, Coutinho JAP. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu Rev Chem Biomol Eng 2023; 14:141-163. [PMID: 36888992 DOI: 10.1146/annurev-chembioeng-101121-085323] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Are deep eutectic solvents (DESs) a promising alternative to conventional solvents? Perhaps, but their development is hindered by a plethora of misconceptions. These are carefully analyzed here, beginning with the very meaning of DESs, which has strayed far beyond its original scope of eutectic mixtures of Lewis or Brønsted acids and bases. Instead, a definition that is grounded on thermodynamic principles and distinguishes between eutectic and deep eutectic is encouraged, and the types of precursors that can be used to prepare DESs are reviewed. Landmark works surrounding the sustainability, stability, toxicity, and biodegradability of these solvents are also discussed, revealing piling evidence that numerous DESs reported thus far, particularly those that are choline based, lack sufficient sustainability-related traits to be considered green solvents. Finally, emerging DES applications are reviewed, emphasizing their most remarkable feature: the ability to liquefy a solid compound with a target property, allowing its use as a liquid solvent.
Collapse
Affiliation(s)
- Dinis O Abranches
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal; ,
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal; ,
| |
Collapse
|
23
|
Prabhune A, Dey R. Green and sustainable solvents of the future: Deep eutectic solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Mohamed Hatta NS, Hussin F, Gew LT, Aroua MK. Enhancing surface functionalization of activated carbon using amino acids from natural source for CO2 capture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
25
|
Lomba L, Errazquin D, Garralaga P, López N, Giner B. Ecotoxicological study of glucose:choline chloride and sorbitol:choline chloride at different contents of water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46427-46434. [PMID: 36717413 DOI: 10.1007/s11356-023-25538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The search of new solvents is currently focused on deep eutectic solvents (DES). However, there are not many ecotoxicological studies in different biomodels of DES that allow knowing how these chemicals affect to the environment along the trophic chain. In this manuscript, two DES at different proportion of water have been prepared and characterized from the ecotoxicological point of view. These solvents are glucose:choline chloride (2:5) and sorbitol:choline chloride (3:2) at different contents of water. To carry out the ecotoxicological study, three biomodels have been used: bacteria Aliivibrio fisheri (A. fisheri), crustacean Daphnia magna (D. magna) and algae Raphidocelis subcapitata (R. subcapitata). The obtained results show that the ecotoxicity of these chemicals depends on the biomodel used and the amount of water, being toxicity values lower for chemicals with higher water content. However, it is important to highlight that the ecotoxicity for all chemicals is quite low with effective concentrations, EC50 values above 1000 mg/L in all the studied cases.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Diego Errazquin
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Pilar Garralaga
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Noelia López
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
26
|
Devi M, Moral R, Thakuria S, Mitra A, Paul S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS OMEGA 2023; 8:9702-9728. [PMID: 36969397 PMCID: PMC10034849 DOI: 10.1021/acsomega.2c07684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) are multicomponent designer solvents that exist as stable liquids over a wide range of temperatures. Over the last two decades, research has been dedicated to developing noncytotoxic, biodegradable, and biocompatible DESs to replace commercially available toxic organic solvents. However, most of the DESs formulated until now are hydrophilic and disintegrate via dissolution on coming in contact with the aqueous phase. To expand the repertoire of DESs as green solvents, hydrophobic DESs (HDESs) were prepared as an alternative. The hydrophobicity is a consequence of the constituents and can be modified according to the nature of the application. Due to their immiscibility, HDESs induce phase segregation in an aqueous solution and thus can be utilized as an extracting medium for a multitude of compounds. Here, we review literature reporting the usage of HDESs for the extraction of various organic compounds and metal ions from aqueous solutions and absorption of gases like CO2. We also discuss the techniques currently employed in the extraction processes. We have delineated the limitations that might reduce the applicability of these solvents and also discussed examples of how DESs behave as reaction media. Our review presents the possibility of HDESs being used as substitutes for conventional organic solvents.
Collapse
Affiliation(s)
| | | | | | | | - Sandip Paul
- . Phone: +91-361-2582321. Fax: +91-361-2582349
| |
Collapse
|
27
|
Moradi Taklimi S, Divsalar A, Ghalandari B, Ding X, Luisa Di Gioia M, Omar KA, Akbar Saboury A. Effects of Deep Eutectic Solvents on the Activity and Stability of Enzymes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Zhang Y, Xiao H, Lv X, Zheng C, Wu Z, Wang N, Wang J, Chen H, Wei F. Profiling and spatial distribution of phenolic compounds in rapeseed by two-step extraction strategy and targeted metabolomics combined with chemometrics. Food Chem 2023; 401:134151. [DOI: 10.1016/j.foodchem.2022.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
29
|
Razavi N, Foroutan F, Sahebian S, Vahdati Khaki J. Extraction and pre-concentration of parabens in liquid pharmaceutical samples by dispersive liquid-liquid microextraction based on deep eutectic solvents. Biomed Chromatogr 2023; 37:e5547. [PMID: 36382931 DOI: 10.1002/bmc.5547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
In this paper dispersive liquid-liquid microextraction using deep eutectic solvent (DES), as an extraction solvent, was applied for the pre-concentration and determination of parabens in liquid pharmaceutical samples. A DES composed of a hydrogen bond acceptor [choline chloride (ChCl)] and a hydrogen bond donor (glucose) achieved the highest extraction efficiency. Therefore, this solvent was selected as the extraction solvent. After the synthesis of this solvent, its various properties were investigated. Thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy were used for this purpose and the successful synthesis of the solvent was confirmed. HPLC with photodiode array detection was used for the analysis of paraben species. Parameters affecting the extraction efficiency were monitored and optimized through univariate analysis and experimental design. Under the optimal conditions (pH of aqueous solution 4.5, ethanol as the disperser solvent, and glucose DES as the extraction solvent), the linearity range of 0.1-5000 ng mL-1 was obtained with the coefficient of determination (R2 ) between 0.993 and 0.9962. Limits of detections ranged from 0.04 to 0.15 ng mL-1 , with relative standard deviations from 1.8% to 6.8%. The developed method was applied to the determination of parabens in liquid pharmaceuticals such as ampule, syrups, and nose drop samples. A certain amount of paraben was added to the tested real samples to increase their shelf life. The relative recoveries in these real samples ranged between 80.9% and 103.1%.
Collapse
Affiliation(s)
- Nourolhoda Razavi
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Foroutan
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Sahebian
- Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jalil Vahdati Khaki
- Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Intermolecular Interactions of Edaravone in Aqueous Solutions of Ethaline and Glyceline Inferred from Experiments and Quantum Chemistry Computations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020629. [PMID: 36677688 PMCID: PMC9863297 DOI: 10.3390/molecules28020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Edaravone, acting as a cerebral protective agent, is administered to treat acute brain infarction. Its poor solubility is addressed here by means of optimizing the composition of the aqueous choline chloride (ChCl)-based eutectic solvents prepared with ethylene glycol (EG) or glycerol (GL) in the three different designed solvents compositions. The slurry method was used for spectroscopic solubility determination in temperatures between 298.15 K and 313.15 K. Measurements confirmed that ethaline (ETA = ChCl:EG = 1:2) and glyceline (GLE = ChCl:GL = 1:2) are very effective solvents for edaravone. The solubility at 298.15 K in the optimal compositions was found to be equal xE = 0.158 (cE = 302.96 mg/mL) and xE = 0.105 (cE = 191.06 mg/mL) for glyceline and ethaline, respectively. In addition, it was documented that wetting of neat eutectic mixtures increases edaravone solubility which is a fortunate circumstance not only from the perspective of a solubility advantage but also addresses high hygroscopicity of eutectic mixtures. The aqueous mixture with 0.6 mole fraction of the optimal composition yielded solubility values at 298.15 K equal to xE = 0.193 (cE = 459.69 mg/mL) and xE = 0.145 (cE = 344.22 mg/mL) for glyceline and ethaline, respectively. Since GLE is a pharmaceutically acceptable solvent, it is possible to consider this as a potential new liquid form of this drug with a tunable dosage. In fact, the recommended amount of edaravone administered to patients can be easily achieved using the studied systems. The observed high solubility is interpreted in terms of intermolecular interactions computed using the Conductor-like Screening Model for Real Solvents (COSMO-RS) approach and corrected for accounting of electron correlation, zero-point vibrational energy and basis set superposition errors. Extensive conformational search allowed for identifying the most probable contacts, the thermodynamic and geometric features of which were collected and discussed. It was documented that edaravone can form stable dimers stabilized via stacking interactions between five-membered heterocyclic rings. In addition, edaravone can act as a hydrogen bond acceptor with all components of the studied systems with the highest affinities to ion pairs of ETA and GLE. Finally, the linear regression model was formulated, which can accurately estimate edaravone solubility utilizing molecular descriptors obtained from COSMO-RS computations. This enables the screening of new eutectic solvents for finding greener replacers of designed solvents. The theoretical analysis of tautomeric equilibria confirmed that keto-isomer edaravone is predominant in the bulk liquid phase of all considered deep eutectic solvents (DES).
Collapse
|
31
|
Mouffok A, Bellouche D, Debbous I, Anane A, Khoualdia Y, Boublia A, Darwish AS, Lemaoui T, Benguerba Y. Synergy of Garlic Extract and Deep Eutectic Solvents as Promising Natural Antibiotics: Experimental and COSMO-RS. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Ratnani S, Mahilkar Sonkar S, Kumari R. Strategies for sustainable organic synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Li Q, Zhang Z, Li Y, Li H, Liu Z, Liu X, Xu Q. Rapid Self-Healing Gel Electrolyte Based on Deep Eutectic Solvents for Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49700-49708. [PMID: 36306375 DOI: 10.1021/acsami.2c12445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A deep eutectic solvent (DES) is a promising electrolyte choice for lithium metal batteries. However, the DES liquid electrolyte causes safety concerns and side reactions with the lithium anode. Therefore, it is necessary to solidify the DES-based electrolyte and enhance its electrochemical stability. Herein, we present a novel DES-based rapid self-healing gel electrolyte, which is able to self-smooth its surface cracks in only 30 min. The electrolyte exhibits noncombustibility (SET = 4 s g-1), high ionic conductivity (1.1 × 10-3 S cm-1 at 25 °C), and a wide electrochemical voltage window (4.5 V vs Li/Li+). As a result, the solid-state lithium batteries coupling the gel electrolyte with the Li anode and LiFePO4 cathode deliver a high specific capacity of 135.4 mA h g-1 with durable cyclic stability (>1200 h). This work provides valuable insights for design of fire-resistant and high-energy solid-state lithium batteries.
Collapse
Affiliation(s)
- Qiqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P. R. China
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin300384, P. R. China
| | - Zhijie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P. R. China
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin300384, P. R. China
| | - Yang Li
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin300384, P. R. China
| | - Huan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, AdelaideSA 5005, Australia
| | - Ziyang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P. R. China
| | - Xingjiang Liu
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin300384, P. R. China
| | - Qiang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P. R. China
| |
Collapse
|
34
|
Bušić V, Gašo-Sokač D. Menshutkin Reaction in Choline Chloride-based Deep Eutectic Solvents. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- V. Bušić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - D. Gašo-Sokač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
35
|
Lee KC, Wu KL, Chang SF, Chang HI, Chen CN, Chen YY. Fermented Ginger Extract in Natural Deep Eutectic Solvent Enhances Cytotoxicity by Inhibiting NF-κB Mediated CXC Chemokine Receptor 4 Expression in Oxaliplatin-Resistant Human Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:2057. [PMID: 36290780 PMCID: PMC9598626 DOI: 10.3390/antiox11102057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Ginger extracts have been shown to have health-promoting pharmacological activity and beneficial effects, including antioxidant and anticancer properties. The extraction of ginger by natural deep eutectic solvents (NaDES) has been shown to enhance bioactivity, but the cytotoxicity of NaDES extracts needs to be further determined. Signaling through the CXC chemokine receptor 4 (CXCR4) expressed on colorectal cancer (CRC) cells has a pivotal role in tumor cell chemosensitivity. Oxaliplatin is a third-generation platinum compound used as an effective chemotherapeutic drug for CRC treatment. However, whether ginger extract and oxaliplatin could induce a synergistic cytotoxic effect in oxaliplatin-resistant CRC cells through modulating CXCR4 expression is not known. In this study, oxaliplatin-resistant HCT-116 (HCT-116/R) cells were generated first. Ginger was extracted using the NaDES mixture betaine/lactate/water (1:2:2.5). Lactobacillus reuteri fermentation of NaDES-ginger extract increased the total polyphenol content (12.42 mg gallic acid/g in non-fermented NaDES-ginger extract and 23.66 mg gallic acid/g in fermented NaDES-ginger extract). It also increased the antioxidant activity by about 20−30% compared to non-fermented NaDES-ginger extract. In addition, it achieved low cytotoxicity to normal colonic mucosal cells and enhanced the anticancer effect on HCT-116/R cells. On the other hand, the inhibition of NF-κB activation by fermented NaDES-ginger extract significantly decreased the CXCR4 expression (p < 0.05) in HCT-116/R cells. The inactivation of NF-κB by pharmacological inhibitor pyrrolidine dithiocarbamate further enhanced the fermented NaDES-ginger extract-reduced CXCR4 expression levels (p < 0.05). Moreover, fermented NaDES-ginger extract could synergistically increase the cytotoxicity of oxaliplatin by inhibiting CXCR4 expression and inactivating NF-κB, resulting in HCT-116/R cell death. These findings demonstrate that fermented NaDES-ginger extract reduces the NF-kB-mediated activation of CXCR4 and enhances oxaliplatin-induced cytotoxicity in oxaliplatin-resistant CRC cells.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Kuen-Lin Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 613, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| |
Collapse
|
36
|
|
37
|
Li B, Li Q, Wang Q, Yan X, Shi M, Wu C. Deep eutectic solvent for spent lithium-ion battery recycling: comparison with inorganic acid leaching. Phys Chem Chem Phys 2022; 24:19029-19051. [PMID: 35938373 DOI: 10.1039/d1cp05968h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) as novel green solvents are potential options to replace inorganic acids for hydrometallurgy. Compared with inorganic acids, the physicochemical properties of DESs and their applications in recycling of spent lithium-ion batteries were summarized. The viscosity, metal solubility, toxicological properties and biodegradation of DESs depend on the hydrogen bond donor (HBD) and acceptor (HBA). The viscosity of ChCl-based DESs increased according to the HBD in the following order: alcohols < carboxylic acids < sugars < inorganic salts. The strongly coordinating HBDs increased the solubility of metal oxide via surface complexation reactions followed by ligand exchange for chloride in the bulk solvent. Interestingly, the safety and degradability of DESs reported in the literature are superior to those of inorganic acids. Both DESs and inorganic acids have excellent metal leaching efficiencies (>99%). However, the reaction kinetics of DESs are 2-3 orders of magnitude slower than those of inorganic acids. A significant advantage of DESs is that they can be regenerated and recycled multiple times after recovering metals by electrochemical deposition or precipitation. In the future, the development of efficient and selective DESs still requires a lot of attention.
Collapse
Affiliation(s)
- Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
38
|
Bener M, Şen FB, Önem AN, Bekdeşer B, Çelik SE, Lalikoglu M, Aşçı YS, Capanoglu E, Apak R. Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chem 2022; 385:132633. [PMID: 35279500 DOI: 10.1016/j.foodchem.2022.132633] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
An environmentally friendly method using natural deep eutectic solvents (NADES) and microwave-assisted extraction (MAE) for the recovery of bioactive compounds from hazelnut pomace (a hazelnut oil process by-product) was developed to contribute to their sustainable valorization. Eight different NADES were prepared for the extraction of antioxidant constituents from hazelnut pomace, and choline chloride:1,2-propylene glycol (CC-PG) was determined as the most suitable NADES, considering their extraction efficiency and physicochemical properties. After selecting suitable NADES, operational parameters for the MAE process of antioxidants from hazelnut pomace were optimized and modeled using response surface methodology. For the highest recovery of antioxidants, the operational parameters of the MAE process were found to be 24% water, 38 min, 92 °C and 18 mL/0.1 g-DS. Under optimized conditions, extracts of both pomace as a by-product and unprocessed hazelnut flours of three different hazelnut samples (Tombul, Çakıldak, and Palaz) were prepared, and their antioxidant capacities were evaluated by spectrophotometric methods. Antioxidant capacities of CC-PG extracts of all hazelnut samples were 2-3 times higher than those of ethanolic extracts. In addition, phenolic characterization of the prepared extracts was carried out using the UPLC-PDA-ESI-MS/MS system. The results of this study suggest that hazelnut by-products can potentially be considered an important and readily available source of natural antioxidants. Furthermore, the modeled MAE procedure has the potential to create an effective and sustainable alternative for pharmaceutical and food industries.
Collapse
Affiliation(s)
- Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih, 34126 Istanbul, Turkey.
| | - Furkan Burak Şen
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Ayşe Nur Önem
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Burcu Bekdeşer
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Saliha Esin Çelik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Melisa Lalikoglu
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcilar, 34320 Istanbul, Turkey
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih, 34126 Istanbul, Turkey
| | - Esra Capanoglu
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Maslak, 34469 Istanbul, Turkey
| | - Reşat Apak
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey.
| |
Collapse
|
39
|
Marchel M, Cieśliński H, Boczkaj G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
40
|
Töpfer K, Pasti A, Das A, Salehi SM, Vazquez-Salazar LI, Rohrbach D, Feurer T, Hamm P, Meuwly M. Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents. J Am Chem Soc 2022; 144:14170-14180. [PMID: 35895323 DOI: 10.1021/jacs.2c04169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spectroscopy and structural dynamics of a deep eutectic mixture (KSCN/acetamide) with varying water content is investigated from 2D IR (with the C-N stretch vibration of the SCN- anions as the reporter) and THz spectroscopy. Molecular dynamics simulations correctly describe the nontrivial dependence of both spectroscopic signatures depending on water content. For the 2D IR spectra, the MD simulations relate the steep increase in the cross-relaxation rate at high water content to the parallel alignment of packed SCN- anions. Conversely, the nonlinear increase of the THz absorption with increasing water content is mainly attributed to the formation of larger water clusters. The results demonstrate that a combination of structure-sensitive spectroscopies and molecular dynamics simulations provides molecular-level insights into the emergence of heterogeneity of such mixtures by modulating their composition.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Andrea Pasti
- Department of Chemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Anuradha Das
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - David Rohrbach
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
41
|
Liu Y, Wu Y, Liu J, Wang W, Yang Q, Yang G. Deep eutectic solvents: Recent advances in fabrication approaches and pharmaceutical applications. Int J Pharm 2022; 622:121811. [PMID: 35550409 DOI: 10.1016/j.ijpharm.2022.121811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have received increasing attention in the past decade owing to their distinguished properties including biocompatibility, tunability, thermal and chemical stability. Particularly, DESs have joined forces in pharmaceutical industry, not only to efficiently separate actives from natural products, but also to dramatically increase solubility and permeability of drugs, both are critical for the drug absorption and efficacy. As a result, lately DESs have been extensively and practically adopted as versatile drug delivery systems for different routes such as nasal, transdermal and oral administration with enhanced bioavailability. This review summarizes the emerging progress of DESs by introducing applied fabrication approaches with advantages and limitations thereof, and by highlighting the pharmaceutical applications of DESs.
Collapse
Affiliation(s)
- Yiwen Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinming Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenxi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Trombino S, Siciliano C, Procopio D, Curcio F, Laganà AS, Di Gioia ML, Cassano R. Deep Eutectic Solvents for Improving the Solubilization and Delivery of Dapsone. Pharmaceutics 2022; 14:pharmaceutics14020333. [PMID: 35214065 PMCID: PMC8875782 DOI: 10.3390/pharmaceutics14020333] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Owing to a growing awareness toward environmental impact, the use of safer and eco-friendly solvents like deep eutectic solvents (DESs), has recently undergone important growth in the pharmaceutical field, with regard to their application as non-aqueous liquid administration vehicles, since they do not carry the same risks of toxicity and handling as traditional organic solvents. Major attention has been given to the development of advantageous transdermal drug delivery systems, because of their ease of use and better acceptability. Here, we report the use of two different DESs, based on choline chloride, used as hydrogen bond acceptor (HBA), and ascorbic acid or propylene glycol, used as hydrogen bond donors (HBDs), able to enhance the solubility and the topical delivery of dapsone, representing a class IV drug. The interactions between the DESs’ components and the drug were studied by performing DSC, FT-IR, and NMR analysis of the eutectic systems and the pure drug, confirming the establishment of H-bonds between the drug and the DESs’ components. Diffusion and permeability studies, carried out in a Franz cell, showed an increase in permeability, highlighting the great potential of DESs as dissolution and permeation enhancers in the development of novel and more effective drug delivery systems in topical administration.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Luisa Di Gioia
- Correspondence: (M.L.D.G.); (R.C.); Tel.: +39-984493095 (M.L.D.G.); +39-984493227 (R.C.)
| | - Roberta Cassano
- Correspondence: (M.L.D.G.); (R.C.); Tel.: +39-984493095 (M.L.D.G.); +39-984493227 (R.C.)
| |
Collapse
|
43
|
Xu W, Ma Y, Wei X, Gong H, Zhao X, Qin Y, Peng Q, Hou Z. Core–shell Co@CoO catalysts for the hydroformylation of olefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj02797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co@CoO core–shell nanoparticles featured as metal Co(0) cores wrapped by CoO shells were constructed via a solvent-thermal process in deep eutectic solvents and showed superior activity and stability for the hydroformylation of olefins.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuan Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Honghui Gong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuxi Qin
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| |
Collapse
|