1
|
Aryal M. Phytoremediation strategies for mitigating environmental toxicants. Heliyon 2024; 10:e38683. [PMID: 39430524 PMCID: PMC11490803 DOI: 10.1016/j.heliyon.2024.e38683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In natural environments, persistent pollutants such as heavy metals and organic compounds, are frequently sequestered in sediments, soils, and mineral deposits, rendering them biologically unavailable. This study examines phytoremediation, a sustainable technology that uses plants to remove pollutants from soil, water, and air. It discusses enhancing techniques such as plant selection, the use of plant growth-promoting bacteria, soil amendments, and genetic engineering. The study highlights the slow removal rates and the limited availability of plant species that are effective for specific pollutants. Furthermore, it investigates bioavailability and the mechanisms underlying root exudation and hyperaccumulation. Applications across diverse environments and innovative technologies, such as transgenic plants and nanoparticles, are also explored. Additionally, the potential for phytoremediation with bioenergy production is considered. The purpose of this study is to provide researchers, practitioners, and policymakers with valuable resources for sustainable solutions.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tribhuvan University, Tri-Chandra Campus, Kathmandu, 44600, Nepal
| |
Collapse
|
2
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
3
|
Ejaz U, Khan SM, Khalid N, Jehangir S, Ali Shah SF, Svenning JC. Elucidating the phytoremediation potentials and ecophysiological mechanisms of indicator plants in the industrial polluted region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121821. [PMID: 39018846 DOI: 10.1016/j.jenvman.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The integrity of natural ecosystems, particularly in the Global South, is increasingly compromised by industrial contaminants. Our study examines the growth of plant species adapted to ecosystems impacted by heavy metal pollution, specifically focusing on their phytoremediation capabilities and tolerance to contaminants. The potential of pollution-tolerant species was evaluated in the industrial subtropical wetland of Sialkot, Pakistan. Employing quantitative ecological methods, data on vegetation, phytosociological attributes, and soil properties were gathered from 450 plots across different pollution gradients. The study pinpointed 17 key indicator species tolerating high heavy metal pollution out of 182 surveyed, using a combination of Indicator Species Analysis (ISA) and the Importance Value Index (IVI). These species demonstrated diverse capacities to extract, stabilize, and accumulate heavy metals (Cr, Zn, Cu, As, Cd, Ni, Hg, and Pb) across varying pollution zones. Notably, Cannabis sativa demonstrated substantial phytoextraction of Zn and Cd, with concentrations reaching 1977.25 μg/g and 1362.78 μg/g, respectively. Arundo donax showed marked hyperaccumulation of Cd, peaking at 410.531 μg/g. Achyranthes aspera was remarkable for its extraction and accumulation of Ni and Cu, with concentrations of 242.412 μg/g and 77.2997 μg/g, respectively. Physiological changes, such as increased proline levels in Cannabis sativa and Achyranthes aspera reaching 39.041 μg/g and 27.523 μg/g under high metal concentrations, indicated adaptation to metal stress. Declines in chlorophyll and carotenoid levels were also observed as metal contamination increased, with up to 35% reductions in some species. These findings underscore the potential efficacy of selected plant species in phytoremediation and highlight the importance of physiological responses in their tolerance to metals, providing valuable information for targeted remediation strategies in polluted ecosystems and improving environmental management and sustainable practices.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark.
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Member Pakistan Academy of Sciences, Pakistan.
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan; Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sadia Jehangir
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Shah Fahad Ali Shah
- School of Economics and Management, Yanshan University, Hebei Province, 066004, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
Phang LY, Mingyuan L, Mohammadi M, Tee CS, Yuswan MH, Cheng WH, Lai KS. Phytoremediation as a viable ecological and socioeconomic management strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50126-50141. [PMID: 39103580 DOI: 10.1007/s11356-024-34585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.
Collapse
Affiliation(s)
- Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lim Mingyuan
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mitra Mohammadi
- Department of Environmental Science, Kheradgerayan Motahar Institute of Higher Education, Kosar 45, Vakil Abad Boulevard, Mashhad, Iran
| | - Chong-Siang Tee
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900, Kampar, Perak, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Muthusamy R, Ramya S, Alfarraj S, Kumarasamy S. Conversion of metal-enriched magnetite mine tailings into suitable soil for vegetation by phytoremediation process with Bougainvillaea glabra under the influence of Thiobacillus ferroxidance. ENVIRONMENTAL RESEARCH 2024; 251:118740. [PMID: 38521356 DOI: 10.1016/j.envres.2024.118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Magnetite mining is a significant contributor to land deterioration as well as HM-based soil contamination. The characteristics of magnetite mine tailing were examined in the present study, in addition to the positive and sustainable restoration strategy with Bougainvillaea glabra under the influence of Thiobacillus ferroxidance. The traits of test soil analysis findings demonstrated that the majority of the parameters exceeded the allowable limits (For instance: HMs such as Cr, Cu, Zn, Pb, Fe, and Co were found to be 208 ± 2.3, 131.43 ± 1.6, 185.41 ± 3.3, 312 ± 5.11, 956 ± 5.3, and 26.89 ± 2.43 mg kg-1 respectively). T. ferroxidance exhibited impressive HMs tolerance for as much as 800 g mL-1 concentrations of Cr, Cu, Zn, Pb, Fe, and Co. To prevent HMs toxic effects, the HMs contents in test soil were decreased by diluting with normal soil in the ratios of Ex-3 and Ex-2. A typical greenhouse study was carried out to assess the phytoremediation ability of B. glabra across six setups for experiments (Ex-1 to Ex-6). According to the findings of this research, the HMs tolerant T. ferroxidance from Ex-3 and Ex-2 had an outstanding impact on the growth, biomolecules level (such as chlorophylls: 65.84 & 41.1 mg g-1, proteins: 165.1 & 151.1 mg g-1, as well as carbohydrates: 227.4 & 159.3 mg g-1) as well as phytoremediation potential of B. glabra on magnetite mine soil. These findings indicated that a mixture of B. glabra as well as T. ferroxidance might serve as a valuable sustainable agent for removing HMs from contaminated soil.
Collapse
Affiliation(s)
- Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Tamilnadu, 635 130, India
| | - Suseenthar Ramya
- Department of Microbiology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Tamilnadu, 635 130, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Tamilnadu, 635 130, India.
| |
Collapse
|
6
|
Onyena AP, Folorunso OM, Nwanganga N, Udom GJ, Ekhator OC, Frazzoli C, Ruggieri F, Bocca B, Orisakwe OE. Engaging One Health in Heavy Metal Pollution in Some Selected Nigerian Niger Delta Cities. A Systematic Review of Pervasiveness, Bioaccumulation and Subduing Environmental Health Challenges. Biol Trace Elem Res 2024; 202:1356-1389. [PMID: 37518840 DOI: 10.1007/s12011-023-03762-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
The Niger Delta environment is under serious threat due to heavy metal pollution. Many studies have been conducted on the heavy metal contamination in soils, water, seafood and plants in the Niger Delta ecosystem. However, there is a lack of clear understanding of the health consequences for people and strategies for attaining One Health, and a dispersion of information that is accessible. The study focused on investigating the contamination levels, distributions, risks, sources and impacts of heavy metals in selected regions of the Niger Delta. Prior studies revealed that the levels of certain heavy metals, including Cd, Pb, Cu, Cr, Mn, Fe and Ni, in water, sediment, fish and plants in most Niger Delta ecosystems were higher than the acceptable threshold attributed to various anthropogenic stressors. In the reviewed Niger Delta states, ecosystems in Rivers state showed the highest concentrations of heavy metals in most sampled sites. Groundwater quality was recorded at concentrations higher than 0.3 mg/L World Health Organization drinking water guideline. High concentrations of copper (147.915 mg/L) and zinc (10.878 mg/L) were found in Rivers State. The heavy metals concentrations were greater in bottom-dwelling organisms such as bivalves, gastropods and shrimp than in other fishery species. Heavy metal exposure in the region poses risks of communicable and non-communicable diseases. Diverse remediation methods are crucial to reduce contamination levels, but comprehensive strategies and international cooperation are essential to address the health hazards. Actively reducing heavy metals in the environment can achieve One Health objectives and mitigate disease and economic burdens.
Collapse
Affiliation(s)
- Amarachi P Onyena
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - Opeyemi M Folorunso
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, 5323, Rivers State, Nigeria
| | - Nkem Nwanganga
- Department of Pharmacology, College of Medicine, University of Nigeria, Enugu Campus, Nsukka, Enugu State, Nigeria
| | - Godswill J Udom
- Department of Pharmacology and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | | | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore Di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, 5323, Rivers State, Nigeria.
- Provictorie Research Organisation, Rivers State, Port Harcourt, Nigeria.
| |
Collapse
|
7
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Tahir Z, Hayyat MU, Khan QF, Sharif F, Farhan M, Shahzad L, Ghafoor GZ. Phyto- and bio-management of metal(loid)-contaminated soil by inoculating resistant bacteria: evaluating tolerance of treated rice plant and soil with its efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122524-122536. [PMID: 37968485 DOI: 10.1007/s11356-023-30769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Anthropogenic activities are increasing the amount of heavy metals and metalloids in the environment on a global scale, harming all living things and necessitating the employment of bioremediation procedures. Metal-resistant bacteria were used to clean polluted soil and promote plant growth; this approach has gained attention in recent years for bioremediation of heavy metal-contaminated systems. We studied the effects of chromium and lithium in Oryza sativa under controlled conditions. In the present study, lithium concentration was applied 50 ppm to 200 ppm according to the dose tolerance level, while the concentration of chromium was 10 ppm throughout the experimental setup due to its concentration observed up to 10 ppm in the targeted soil, which is present in Kasur area Punjab, Pakistan, for rice crop production in future perspective. The results reflect that plants with high lithium concentration have shown decreased plant growth and development, but due to bacterial presence, they thrived until harvesting stage. Due to increase in stress concentration up to 200 ppm, decline in plant growth was observed, but after bacterial inoculation, better growth was seen (chlorophyll content increased to 40, and panicle numbers were more than 13). Our findings reveal that lithium and chromium have a direct negative impact on Oryza sativa, which can be minimized by utilizing halophilic microbes (Klebsiella pneumonia and Enterobacter cloacae) through soil-plant system.
Collapse
Affiliation(s)
- Zainab Tahir
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Qaiser Farid Khan
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| |
Collapse
|
9
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
10
|
Afzal MR, Naz M, Wan J, Dai Z, Ullah R, Rehman SU, Du D. Insights into the Mechanisms Involved in Lead (Pb) Tolerance in Invasive Plants-The Current Status of Understanding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2084. [PMID: 37299064 PMCID: PMC10255771 DOI: 10.3390/plants12112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Invasive plant species possess remarkable abilities to establish themselves in new environments and to displace native species. Their success can be attributed to various physiological and biochemical mechanisms, allowing them to tolerate adverse environmental conditions, including high lead (Pb) toxicity. Comprehension of the mechanisms responsible for Pb tolerance in invasive plants is still limited, but it is rapidly evolving. Researchers have identified several strategies in invasive plants to tolerate high levels of Pb. This review provides an overview of the current understanding of the ability of invasive species to tolerate or even accumulate Pb in plant tissues, including vacuoles and cell walls, as well as how rhizosphere biota (bacteria and mycorrhizal fungi) help them to enhance Pb tolerance in polluted soils. Furthermore, the article highlights the physiological and molecular mechanisms regulating plant responses to Pb stress. The potential applications of these mechanisms in developing strategies for remediating Pb-contaminated soils are also discussed. Specifically, this review article provides a comprehensive understanding of the current status of research on the mechanisms involved in Pb tolerance in invasive plants. The information presented in this article may be useful in developing effective strategies for managing Pb-contaminated soils, as well as for developing more resilient crops in the face of environmental stressors.
Collapse
Affiliation(s)
- Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (J.W.); (Z.D.)
| | - Misbah Naz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (J.W.); (Z.D.)
| | - Justin Wan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (J.W.); (Z.D.)
| | - Zhicong Dai
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (J.W.); (Z.D.)
| | - Raza Ullah
- Institute of Environmental and Agricultural Science, Faculty of Life Sciences, University of Okara, Okara 56130, Pakistan;
| | - Shafiq ur Rehman
- Department of Botany, Faculty of Life Sciences, University of Okara, Okara 56130, Pakistan;
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.N.); (J.W.); (Z.D.)
| |
Collapse
|
11
|
Nagy A, Magyar T, Kiss NÉ, Tamás J. Composted sewage sludge utilization in phytostabilization of heavy metals contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1510-1523. [PMID: 36734108 DOI: 10.1080/15226514.2023.2170322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In phytostabilization, heavy metal-tolerant plants (e.g.,grasses) can be used to reduce the mobility of heavy metals in soils. The most important step in phytostabilization is the selection of the suitable plant species, in which growth and development can be supported by soil amendments. Sewage sludge compost could be a suitable additive, which provides nutrients for the plant species used for phytostabilization and contributes to an alternative solution for sewage sludge utilization. The aim of the study was to examine the potential of sewage sludge compost in phytostabilization for heavy metal contaminated matrices: identify the optimal ratio of sewage sludge compost to decrease phytotoxicity of the matrices, and assessment of feasible plant species for phytostabilization based on its bioaccumulation properties. In this research, perennial ryegrass (Lolium perenne), broad-leaved sorrel sorrel (Rumex acetosa), lettuce (Lactuca sativa) and cabbage (Brassica oleracea var. capitata) were used for phytotoxicity experiments as well as for testing sewage sludge compost amended phytostabilization of polluted flotation sludge and mine tailings. Sewage sludge compost increased the pH and electric conductivity of the matrices. High salt content and low acidity, altogether with heavy metals caused harmful physiological effects on plant species grown without any compost addition. In the root development test, as in the germination test, the application of 5% sewage sludge compost proved to be optimal. The lower translocation factors of broad-leaved sorrel and perennial ryegrass showed a higher rate of heavy metal accumulation in the roots. Perennial ryegrass, cabbage, and lettuce plant species reached their maximum biomass by adding 5% of sewage sludge compost. Based on the bioaccumulation, translocation and biomass properties, application of perennial ryegrass is recommended for phytostabilization of heavy metal contaminated sites. Furthermore, composted sewage sludge also had a significant effect on the reduction of heavy metal uptake by cabbage and lettuce, which highlights their role as indicator plants in ecotoxicological measurements.
Collapse
Affiliation(s)
- Attila Nagy
- Institute of Water and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tamás Magyar
- Institute of Water and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Nikolett Éva Kiss
- Institute of Water and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - János Tamás
- Institute of Water and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, Arif M, Hassan A, Rachmadona N, Rajendran S, Mubashir M, Khoo KS. Remediation techniques for elimination of heavy metal pollutants from soil: A review. ENVIRONMENTAL RESEARCH 2022; 214:113918. [PMID: 35926577 DOI: 10.1016/j.envres.2022.113918] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 05/27/2023]
Abstract
Contaminated soil containing toxic metals and metalloids is found everywhere globally. As a consequence of adsorption and precipitation reactions, metals are comparatively immobile in subsurface systems. Hence remediation techniques in such contaminated sites have targeted the solid phase sources of metals such as sludges, debris, contaminated soils, or wastes. Over the last three decades, the accumulation of these toxic substances inside the soil has increased dramatically, putting the ecosystem and human health at risk. Pollution of heavy metal have posed severe impacts on human, and it affects the environment in different ways, resulting in industrial anger in many countries. Various procedures, including chemical, biological, physical, and integrated approaches, have been adopted to get rid of this type of pollution. Expenditure, timekeeping, planning challenges, and state-of-the-art gadget involvement are some drawbacks that need to be properly handled. Recently in situ metal immobilization, plant restoration, and biological methods have changed the dynamics and are considered the best solution for removing metals from soil. This review paper critically evaluates and analyzes the numerous approaches for preparing heavy metal-free soil by adopting different soil remediation methods.
Collapse
Affiliation(s)
- Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Huma Ahmad
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafsa Shafqat
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Arif
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Afaq Hassan
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, West Java, Indonesia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775, Arica, Chile
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Rahman MS, Parvez S, Begum BA, Quraishi SB, Choudhury TR, Fatema KJ, Hosen MM, Bodrud-Doza M, Rahman LS, Sattar MA. Chemometric appraisal of water quality for domestic and agricultural purposes: a case study from establishing Rooppur Nuclear Power Plant (NPP) area, Pabna District, Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56620-56641. [PMID: 35347605 DOI: 10.1007/s11356-022-19308-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Water is the main sources for domestic purposes and as well as for both farming and industrial activities. Therefore, this study investigated the quality of groundwater at Ishwardi, Pabna district of Bangladesh. This study showed that the heavy metals such as Pb, Cd, Cr, As, Ni, Cu, Zn, and Fe were remaining in trace amount. The groundwater quality index (GWQI), heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and degree of contamination (Cd) revealed that all of the groundwater samples belonged to good quality condition for drinking purposes. Nevertheless, Cd provided better index than other indices. Subsequently, hazard quotient (HQ) and hazard index (HI) values for heavy metals indicated that there was no significant noncarcinogenic health risk due to oral ingestion of groundwater except three sites. However, the paired student t-test ([Formula: see text]) revealed that child was found to be more exposed compared to adult for noncarcinogenic health risk due to oral ingestion of the same groundwater samples. This study revealed that pH, EC, TDS, salinity, Na+, K+, Mg2+, Ca2+, Cl-, SO42-, PO43-, and NO3- values in water samples are in tolerable limit according to Bangladesh (DoE) and international standards (WHO, IS, FAO, USEPA, UCCC). Subsequently, combined approaches of numerous irrigation water quality indices, sodium adsorption ratio (SAR), soluble sodium percentage (SSP), total hardness (TH), residual sodium carbonate (RSC), and Kelley's ratio (KR), were applied to appraise the appropriateness of water for farming purposes. The irrigation water quality index (IWQI) revealed that majority of the groundwater samples were suitable for agricultural purposes. Classification based on Wilcox and US salinity hazard diagram indicated a consistent conclusion, which indicated that the water quality was in good condition for farming in the study area.
Collapse
Affiliation(s)
- M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh.
- Air Particulate Research Laboratory, Chemistry Division, Atomic Energy Centre, 4-Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh.
| | - Shaown Parvez
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Islamic University, Kushtia, Bangladesh
| | - Bilkis A Begum
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka, 1000, Bangladesh
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka, 1000, Bangladesh
| | - Tasrina R Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka, 1000, Bangladesh
| | - Konica J Fatema
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh
| | - Mohammad M Hosen
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka, 1000, Bangladesh
| | - Md Bodrud-Doza
- Climate Change Programme, BRAC Centre, 75 Mohakhali, Dhaka, 1212, Bangladesh
| | - Lamisa S Rahman
- Faculty of Science, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Md Abdus Sattar
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
14
|
Jyoti D, Sinha R, Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103927. [PMID: 35809826 DOI: 10.1016/j.etap.2022.103927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a major concern of the modern era as it affects all the principal aspects of the environment, especially the hydrosphere. Pollution with heavy metals has unequivocally threatened aquatic bodies and organisms as these metals are persistent, non-biodegradable, and toxic. Heavy metals tend to accumulate in the environment and eventually in humans, which makes their efficient removal a topic of paramount importance. Treatment of metal-contaminated water can be done both via chemical and biological methods. Where remediation through conventional methods is expensive and generates a large amount of sludge, biological methods are favoured over older and prevalent chemical purification processes because they are cheaper and environment friendly. The present review attempts to summarise effective methods for the remediation of water contaminated with heavy metals. We concluded that in biological techniques, bio-sorption is among the most employed and successful mechanisms because of its high efficacy and eco-friendly nature.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173 229, India.
| | - Reshma Sinha
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Karalija E, Selović A, Bešta-Gajević R, Šamec D. Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil clean-up. PHYSIOLOGIA PLANTARUM 2022; 174:e13739. [PMID: 35765975 DOI: 10.1111/ppl.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) soil contamination is a global problem for food security due to its ubiquity, toxicity at low levels, persistence, and bioaccumulation in living organisms. Humans' intake of heavy metals is usually due to direct contact with contaminated soil, through the food chain (Cd accumulation in crops and edible plants) or through drinking water in cases of coupled groundwater-surface water systems. Phytoextraction is one of the eco-friendly, sustainable solutions that can be used as a method for soil clean-up with the possibility of re-use of extracted metals through phytomining. Phytoextraction is often limited by the tolerance level of hyperaccumulating plants and the restriction of their growth. Mechanisms of hyperaccumulation of heavy metals in tolerant species have been studied, but there are almost no data on mechanisms of further improvement of the accumulation capacity of such plants. Priming can influence plant stress tolerance by the initiation of mild stress cues resulting in acclimation of the plant. The potential of plant priming in abiotic stress tolerance has been extensively investigated using different types of molecules that are supplemented exogenously to plant organs (roots, leaves, etc.), resulting in enhanced tolerance of abiotic stress. This review focuses on mechanisms of enhancement of plant stress tolerance in hyperaccumulating plants for their exploitation in phytoextraction processes.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alisa Selović
- Laboratory for Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Renata Bešta-Gajević
- Laboratory for Microbiology, Department for Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Dunja Šamec
- Department of Food Technology, University North, Koprivnica, Croatia
| |
Collapse
|
16
|
Ali MM, Islam MS, Islam ARMT, Bhuyan MS, Ahmed ASS, Rahman MZ, Rahman MM. Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh. MARINE POLLUTION BULLETIN 2022; 175:113274. [PMID: 35066413 DOI: 10.1016/j.marpolbul.2021.113274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Quantification of four toxic metals (As, Cr, Cd, and Pb) in water and sediments at the Sitakunda ship breaking area in Bangladesh was studied. Along with this, sediment quality and ecological risk were evaluated for the metal intrusion to the study area. A total sample number of 120 (water; n = 60 and sediment; n = 60) were analyzed for both winter and summer seasons using atomic absorption spectrophotometer (AAS). The trace metal concentration in both water and sediment showed decreasing trend as follows; Cr (mean-W: 0.118 mg/L; mean-S:121.87 mg/kg) > Pb (mean-W: 0.064 mg/L; mean-S: 65.31 mg/kg) > As (mean-W: 0.03 mg/L; mean-S: 32.53 mg/kg) > Cd (mean-W: 0.004 mg/L; mean-S: 4.81 mg/kg). However, in both segments, the concentrations of the toxic metals exceeded the recommended acceptable limits. As and Cd showed significant variation (water and sediment) between the seasons, while Pb and Cr had no seasonal impact. Metal pollution index (MPI) and contamination factor (CF) was evaluated and revealed that the study area exhibited the critical score of water quality (MPI > 100). The cumulative effect of the metal concentrations was high (CI > 3). The assessed mean geoaccumulaiton index (Igeo) revealed that the study area was moderate to strongly polluted except for Cr. According to the contamination factor (CF), the sediment samples were moderate to highly contaminated by Cd, Pb, and As. Moreover, the explored range of pollution load index (PLI) in all sampling sites in the ship breaking region was from 1.75 to 3.10, suggesting that the sediment in the study area was highly polluted by heavy metals (PLI > 1). The risk index and the potential ecological risk index (PERI) suggested that the study area was at high risk due to metals pollution. Therefore, it is obligatory to maintain some crucial efforts for the betterment of the surrounding environment near the investigated sites.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh; Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Md Simul Bhuyan
- Institute of Marine Sciences, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong 4331, Bangladesh
| | - A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh
| | - Md Zillur Rahman
- Quality Control Laboratory, Department of Fisheries, Khulna 9000, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|