1
|
Adeyeri OE, Folorunsho AH, Adeliyi TE, Ayegbusi KI, Akinsanola AA, Ndehedehe CE, Ahmed N, Babalola TE. Climate change is intensifying rainfall erosivity and soil erosion in West Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177174. [PMID: 39461512 DOI: 10.1016/j.scitotenv.2024.177174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Soil erosion is a critical environmental challenge with significant implications for agriculture, water quality, and ecosystem stability. Understanding its dynamics is essential for sustainable environmental management and societal welfare. Here, we analyze rainfall erosivity and erosion patterns across West Africa (WAF) during the historical (1982-2014), near future (2028-2060), and far future (2068-2100) periods under Shared Socioeconomic Pathways (SSPs 370 and 585). Using bias-corrected-downscaled (BCD) climate models validated against reference data, we ensure an accurate representation of rainfall-a key driver of erosivity (R-factor) and soil erosion. We compare Renard's approach and the Modified Fournier Index (MFI) to calculate the R-factor and note a strong correlation. However, Renard's method shows slightly lower accuracy in Sierra Leone, Guinea, and The Gambia, likely due to its inability to capture high-intensity, short-duration rainfall events. In contrast, the MFI, utilizing continuous rain gauge data, proves more reliable for these regions. We also attribute fluctuations in erosivity, such as those seen during the 2003 West Africa floods, to synoptic weather patterns influenced by multiple climate processes. Furthermore, our analysis reveals regions where future soil erosion could exceed 20 t/ha/yr due to climate change. Under the SSP 370 scenario, soil erosion in WAF is projected to rise by 14.84 % in the near future and 18.65 % in the far future, increasing further under SSP 585 to 19.86 % and 23.49 %, respectively. The most severe increases are expected in Benin and Nigeria, with Nigeria potentially facing a 66.41 % rise in erosion by the far future under SSP 585. These findings highlight the region's exposure to intensified climatic conditions and underscore the urgent need for targeted soil management and climate adaptation strategies to mitigate erosion's ecological and socioeconomic impacts.
Collapse
Affiliation(s)
- Oluwafemi E Adeyeri
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory 2600, Australia; Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
| | | | - Tolulope E Adeliyi
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Kayode I Ayegbusi
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Akintomide A Akinsanola
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA; Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Christopher E Ndehedehe
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia; School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Naveed Ahmed
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Toju E Babalola
- Department of Water Resources Management and Agrometeorology, Federal University, PMB 373, Oye, Ekiti 371104, Nigeria
| |
Collapse
|
2
|
Zhao Y, Zhu D, Wu Z, Cao Z. Extreme rainfall erosivity: Research advances and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170425. [PMID: 38296089 DOI: 10.1016/j.scitotenv.2024.170425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Extreme rainfall erosivity, the capacity of intense rainfall to induce soil erosion, is vital for anticipating future impacts on soil conservation. Despite extensive research, significant differences persist in terms of understanding influencing mechanisms, potential impacts, estimation models and future trends of extreme rainfall erosivity. Quantitatively describing extreme rainfall erosivity remains a key issue in existing research. In this study, we comprehensively reviewed the literature to assess the relationships between extreme rainfall characteristics and rainfall erosivity, between extreme rainfall erosivity and soil erosion, estimation models and trend prediction. The aim was to summarize previous related research and achievements, providing a better understanding of the generation, impacts and future trends of extreme rainfall erosivity. Future research directions should include identifying the thresholds of extreme rainfall events, increasing research attention on tropical cyclones in terms of rainfall erosivity, considering on the impact of extreme rainfall erosivity on soil erosion, and improving rainfall erosivity estimation and simulation prediction methods. This study could contribute to adapting to global climate change and aiding in formulating soil erosion prevention and environmental protection recommendations.
Collapse
Affiliation(s)
- Yingshan Zhao
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Dayun Zhu
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China.
| | - Zhigao Wu
- School of Architecture, Southeast University, Nanjing 210096, China
| | - Zhen Cao
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| |
Collapse
|
3
|
Feeney CJ, Robinson DA, Thomas ARC, Borrelli P, Cooper DM, May L. Agricultural practices drive elevated rates of topsoil decline across Kenya, but terracing and reduced tillage can reverse this. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161925. [PMID: 36736388 DOI: 10.1016/j.scitotenv.2023.161925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
As agricultural land area increases to feed an expanding global population, soil erosion will likely accelerate, generating unsustainable losses of soil and nutrients. This is critical for Kenya where cropland expansion and nutrient loading from runoff and erosion is contributing to eutrophication of freshwater ecosystems and desertification. We used the Revised Universal Soil Loss Equation (RUSLE) to predict soil erosion rates under present land cover and potential natural vegetation nationally across Kenya. Simulating natural vegetation conditions allows the degree to which erosion rates are elevated under current land use practices to be determined. This methodology exploits new digital soil maps and two vegetation cover maps to model topsoil (top 20 cm) erosion rates, lifespans (the mass of topsoil divided by erosion rate), and lateral nutrient fluxes (nutrient concentration times erosion rate) under both scenarios. We estimated the mean soil erosion rate under current land cover at ~5.5 t ha-1 yr-1, ~3 times the rate estimated for natural vegetation cover (~1.8 t ha-1 yr-1), and equivalent to ~320 Mt yr-1 of topsoil lost nationwide. Under present erosion rates, ~8.8 Mt, ~315 Kt, and ~ 110 Kt of soil organic carbon, nitrogen and phosphorous are lost from soil every year, respectively. Further, 5.3 % of topsoils (~3.1 Mha), including at >25 % of croplands, have short lifespans (<100 years). Additional scenarios were tested that assume combinations of terracing and reduced tillage practices were adopted on croplands to mitigate erosion. Establishing bench terraces with zoned tillage could reduce soil losses by ≥75 %; up to 87.1 t ha-1 yr-1. These reductions are comparable to converting croplands to natural vegetation, demonstrating most agricultural soils can be conserved successfully. Extensive long-term monitoring of croplands with terraces and reduced tillage established is required to verify the efficacy of these agricultural support practices as indicated by our modelling.
Collapse
Affiliation(s)
- Christopher J Feeney
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David A Robinson
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Amy R C Thomas
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Pasquale Borrelli
- Department of Science, Roma Tre University, Viale Guglielmo Marconi, 446, 00146 Rome, Italy
| | - David M Cooper
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Linda May
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 OQB, UK
| |
Collapse
|
4
|
Rendana M, Idris WMR, Rahim SA, Rahman ZA, Lihan T. Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia. GEOSCIENCE LETTERS 2023; 10:1. [PMID: 36619610 PMCID: PMC9810522 DOI: 10.1186/s40562-022-00254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Climate change and soil erosion are very associated with environmental defiance which affects the life sustainability of humans. However, the potency effects of both events in tropical regions are arduous to be estimated due to atmospheric conditions and unsustainable land use management. Therefore, several models can be used to predict the impacts of distinct climate scenarios on human and environmental relationships. In this study, we aimed to predict current and future soil erosion potential in the Chini Lake Basin, Malaysia under different Climate Model Intercomparison Project-6 (CMIP6) scenarios (e.g., SSP2.6, SSP4.5, and SSP8.5). Our results found the predicted mean soil erosion values for the baseline scenario (2019-2021) was around 50.42 t/ha year. The mining areas recorded the highest soil erosion values located in the southeastern part. The high future soil erosion values (36.15 t/ha year) were obtained for SSP4.5 during 2060-2080. Whilst, the lowest values (33.30 t/ha year) were obtained for SSP2.6 during 2040-2060. According to CMIP6, the future soil erosion potential in the study area would reduce by approximately 33.9% compared to the baseline year (2019-2021). The rainfall erosivity factor majorly affected soil erosion potential in the study area. The output of the study will contribute to achieving the United Nations' 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Muhammad Rendana
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya, 30662 South Sumatra, Indonesia
| | - Wan Mohd Razi Idris
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Sahibin Abdul Rahim
- Department of Environmental Science, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Zulfahmi Ali Rahman
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Tukimat Lihan
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|