1
|
Webb M, Morrison G, Baumann K, Li J, Ditto JC, Huynh HN, Yu J, Mayer K, Mael L, Vance ME, Farmer DK, Abbatt J, Poppendieck D, Turpin BJ. Dynamics of residential indoor gas- and particle-phase water-soluble organic carbon: measurements during the CASA experiment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39373709 DOI: 10.1039/d4em00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOCg) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOCg and total particle phase WSOC (WSOCp)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOCg and WSOCp inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOCg concentrations (215 ± 29 μg-C m-3) were generally 36× higher than WSOCp (6 ± 3 μg-C m-3) and 20× higher than outdoor levels. A building-specific emission factor (Ef) of 31 mg-C h-1 maintained the relatively high house WSOCg background, which was dominated by ethanol (46 μg-C m-3 to 82 μg-C m-3). When we opened the windows, WSOCg decayed slower (2.8 h-1) than the air change rate (21.2 h-1) and Ef increased (243 mg-C h-1). The response (increased Ef) suggests WSOCg concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOCg concentration decay rates from these activities (0.4 h-1 to 4.0 h-1) were greater than the normal operating 0.24 h-1 air change rate, which is consistent with an important role for surface removal.
Collapse
Affiliation(s)
- Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Han N Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Liora Mael
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Marina E Vance
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | | | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Saraga DΕ, Querol X, Duarte RMBO, Aquilina NJ, Canha N, Alvarez EG, Jovasevic-Stojanovic M, Bekö G, Byčenkienė S, Kovacevic R, Plauškaitė K, Carslaw N. Source apportionment for indoor air pollution: Current challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165744. [PMID: 37487894 DOI: 10.1016/j.scitotenv.2023.165744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.
Collapse
Affiliation(s)
- Dikaia Ε Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noel J Aquilina
- Department of Chemistry - Faculty of Science, Chemistry Building, University of Malta, Malta
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Elena Gómez Alvarez
- Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Milena Jovasevic-Stojanovic
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Gabriel Bekö
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Healthy and Sustainable Built Environment Research Centre, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Steigvilė Byčenkienė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Kristina Plauškaitė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
3
|
Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The solid particle number emissions of Diesel vehicles are very low due to the particulate filters as exhaust aftertreatment devices. However, periodically, the trapped particles are oxidized (i.e., active regeneration) in order to keep the backpressure at low levels. The solid particle number emissions during regenerations are only partly covered by the regulations. Many studies have examined the emissions during regenerations, but their contribution to the overall emissions has not been addressed adequately. Furthermore, the number concentration of volatile particles, which is not included in the regulations, can be many of orders of magnitude higher. In this study, the particulate emissions of two light-duty Euro 6 vehicles were measured simultaneously at the tailpipe and the dilution tunnel. The results showed that the weighted (i.e., considering the emissions during regeneration) solid particle number emissions remained well below the applicable limit of 6 × 1011 #/km (solid particles > 23 nm). This was true even when considering solid sub-23 nm particles. However, the weighted volatile particle number emissions were many orders of magnitude higher, reaching up to 3 × 1013 #/km. The results also confirmed the equivalency of the solid particle number results between tailpipe and dilution tunnel locations. This was not the case for the volatile particles which were strongly affected by desorption phenomena. The high number of volatiles during regenerations even interfered with the 10 nm solid particle number measurements at the dilution tunnel, even though a catalytic stripper equipped instrument was also used in the dilution tunnel.
Collapse
|
4
|
Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Road transport significantly contributes to air pollution in cities. Emission regulations have led to significantly reduced emissions in modern vehicles. Particle emissions are controlled by a particulate matter (PM) mass and a solid particle number (SPN) limit. There are concerns that the SPN limit does not effectively control all relevant particulate species and there are instances of semi-volatile particle emissions that are order of magnitudes higher than the SPN emission levels. This overview discusses whether a new metric (total particles, i.e., solids and volatiles) should be introduced for the effective regulation of vehicle emissions. Initially, it summarizes recent findings on the contribution of road transport to particle number concentration levels in cities. Then, both solid and total particle emission levels from modern vehicles are presented and the adverse health effects of solid and volatile particles are briefly discussed. Finally, the open issues regarding an appropriate methodology (sampling and instrumentation) in order to achieve representative and reproducible results are summarized. The main finding of this overview is that, even though total particle sampling and quantification is feasible, details for its realization in a regulatory context are lacking. It is important to define the methodology details (sampling and dilution, measurement instrumentation, relevant sizes, etc.) and conduct inter-laboratory exercises to determine the reproducibility of a proposed method. It is also necessary to monitor the vehicle emissions according to the new method to understand current and possible future levels. With better understanding of the instances of formation of nucleation mode particles it will be possible to identify its culprits (e.g., fuel, lubricant, combustion, or aftertreatment operation). Then the appropriate solutions can be enforced and the right decisions can be taken on the need for new regulatory initiatives, for example the addition of total particles in the tailpipe, decrease of specific organic precursors, better control of inorganic precursors (e.g., NH3, SOx), or revision of fuel and lubricant specifications.
Collapse
|