Zappa D, Kaur N, Moumen A, Comini E. Metal Oxide Nanowire-Based Sensor Array for Hydrogen Detection.
MICROMACHINES 2023;
14:2124. [PMID:
38004981 PMCID:
PMC10672881 DOI:
10.3390/mi14112124]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Accurate hydrogen leakage detection is a major requirement for the safe and widespread integration of this fuel in modern energy production devices, such as fuel cells. Quasi-1D nanowires of seven different metal oxides (CuO, WO3, Nb-added WO3, SnO2, ZnO, α-Bi2O3, NiO) were integrated into a conductometric sensor array to evaluate the hydrogen-sensing performances in the presence of interfering gaseous compounds, namely carbon monoxide, nitrogen dioxide, methane, acetone, and ethanol, at different operating temperatures (200-400 °C). Principal component analysis (PCA) was applied to data extracted from the array, demonstrating the ability to discriminate hydrogen over other interferent compounds. Moreover, a reduced array formed by only five sensors is proposed. This compact array may be easily implementable into artificial olfaction systems used in real hydrogen detection applications.
Collapse