1
|
Yang Y, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Zheng Y, Alalawy AI, Koutb M, Salama ES. Potential of oleaginous microbes for lipid accumulation and renewable energy generation. World J Microbiol Biotechnol 2024; 40:337. [PMID: 39358563 DOI: 10.1007/s11274-024-04145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Biocomponents (such as lipids) accumulate in oleaginous microorganisms and could be used for renewable energy production. Oleaginous microbes are characterized by their ability to accumulate high levels of lipids, which can be converted into biodiesel. The oleaginous microbes (including microalgae, bacteria, yeast, and fungi) can utilize diverse substrates. Thus, in this study, commercially viable oleaginous microorganisms are comparatively summarized for their growth conditions, substrate utilization, and applications in biotechnological processes. Lipid content is species-dependent, as are culture conditions (such as temperature, pH, nutrients, and culture time) and substrates. Lipid production can be increased by selecting suitable microorganisms and substrates, optimizing environmental conditions, and using genetic engineering techniques. In addition, the emphasis on downstream processes (including harvesting, cell disruption, lipid extraction, and transesterification) highlights their critical role in enhancing cost-effectiveness. Oleaginous microorganisms are potential candidates for lipid biosynthesis and could play a key role in meeting the energy needs of the world in the future.
Collapse
Affiliation(s)
- Yulu Yang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Mohammed Jalalah
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Saeed A Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | | | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mostafa Koutb
- Department of Biology, Faculty of Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Vasquez YMSC, Cueva-Yesquen LG, Duarte AWF, Rosa LH, Valladão R, Lopes AR, Costa Bonugli-Santos R, de Oliveira VM. Genomics, Proteomics, and Antifungal Activity of Chitinase from the Antarctic Marine Bacterium Curtobacterium sp. CBMAI 2942. Int J Mol Sci 2024; 25:9250. [PMID: 39273199 PMCID: PMC11395076 DOI: 10.3390/ijms25179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.
Collapse
Affiliation(s)
- Yesenia Melissa Santa-Cruz Vasquez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Luis Gabriel Cueva-Yesquen
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Alysson Wagner Fernandes Duarte
- Complexo de Ciências Médicas e de Enfermagem, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca 57309-005, AL, Brazil
| | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo Valladão
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Adriana Rios Lopes
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Rafaella Costa Bonugli-Santos
- Instituto Latino Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu 85870-650, PR, Brazil;
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
| |
Collapse
|
3
|
Lejeune C, Abreu S, Guérard F, Askora A, David M, Chaminade P, Gakière B, Virolle M. Consequences of the deletion of the major specialized metabolite biosynthetic pathways of Streptomyces coelicolor on the metabolome and lipidome of this strain. Microb Biotechnol 2024; 17:e14538. [PMID: 39093579 PMCID: PMC11296114 DOI: 10.1111/1751-7915.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Chassis strains, derived from Streptomyces coelicolor M145, deleted for one or more of its four main specialized metabolites biosynthetic pathways (CPK, CDA, RED and ACT), in various combinations, were constructed for the heterologous expression of specialized metabolites biosynthetic pathways of various types and origins. To determine consequences of these deletions on the metabolism of the deleted strains comparative lipidomic and metabolomic analyses of these strains and of the original strain were carried out. These studies unexpectedly revealed that the deletion of the peptidic clusters, RED and/or CDA, in a strain deleted for the ACT cluster, resulted into a great increase in the triacylglycerol (TAG) content, whereas the deletion of polyketide clusters, ACT and CPK had no impact on TAG content. Low or high TAG content of the deleted strains was correlated with abundance or paucity in amino acids, respectively, reflecting high or low activity of oxidative metabolism. Hypotheses based on what is known on the bio-activity and the nature of the precursors of these specialized metabolites are proposed to explain the unexpected consequences of the deletion of these pathways on the metabolism of the bacteria and on the efficiency of the deleted strains as chassis strains.
Collapse
Affiliation(s)
- Clara Lejeune
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| | - Sonia Abreu
- UFR Pharmacie, Université Paris‐Saclay, CNRS, Group «Lipides, Systèmes Analytiques et Biologiques (Lip(Sys)»OrsayFrance
| | - Florence Guérard
- Institut Des Sciences Des Plantes (IPS2, UMR 9213), Université Paris‐Saclay, CNRS, Plateforme «SPOmics‐Métabolome»Gif‐sur‐YvetteFrance
| | - Ahmed Askora
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
- Department of Botany and Microbiology, Faculty of ScienceZagazig UniversityZagazigEgypt
| | - Michelle David
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| | - Pierre Chaminade
- UFR Pharmacie, Université Paris‐Saclay, CNRS, Group «Lipides, Systèmes Analytiques et Biologiques (Lip(Sys)»OrsayFrance
| | - Bertrand Gakière
- Institut Des Sciences Des Plantes (IPS2, UMR 9213), Université Paris‐Saclay, CNRS, Plateforme «SPOmics‐Métabolome»Gif‐sur‐YvetteFrance
| | - Marie‐Joelle Virolle
- Institut de Biologie Intégrative de la Cellule (I2BC, UMR 9198), Université Paris‐Saclay, CEA, CNRS, Group MES (Métabolisme Energétique Des Streptomyces)Gif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Matyja K, Lech M. Dynamic Energy Budget model for E. coli growth in carbon and nitrogen limitation conditions. Appl Microbiol Biotechnol 2024; 108:408. [PMID: 38967685 PMCID: PMC11226513 DOI: 10.1007/s00253-024-13245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The simulations and predictions obtained from mathematical models of bioprocesses conducted by microorganisms are not overvalued. Mechanistic models are bringing a better process understanding and the possibility of simulating unmeasurable variables. The Dynamic Energy Budget (DEB) model is an energy balance that can be formulated for any living organism and can be classified as a structured model. In this study, the DEB model was used to describe E. coli growth in a batch reactor in carbon and nitrogen substrate limitation conditions. The DEB model provides a possibility to follow the changes in the microbes' cells including their elemental composition and content of some important cell ingredients in different growth phases in substrate limitation conditions which makes it more informative compared to Monod's model. The model can be used as an optimal choice between Monod-like models and flux-based approaches. KEY POINTS: • The DEB model can be used to catch changes in elemental composition of E. coli • Bacteria batch culture growth phases can be explained by the DEB model • The DEB model is more informative compared to Monod's based models.
Collapse
Affiliation(s)
- Konrad Matyja
- Faculty of Chemistry, Department of Micro, Nano, and Bioprocess Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Magdalena Lech
- Faculty of Chemistry, Department of Micro, Nano, and Bioprocess Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
5
|
Lei Y, Wang X, Sun S, He B, Sun W, Wang K, Chen Z, Guo Z, Li Z. A review of lipid accumulation by oleaginous yeasts: Culture mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170385. [PMID: 38364585 DOI: 10.1016/j.scitotenv.2024.170385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.
Collapse
Affiliation(s)
- Yuxin Lei
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Shushuang Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Bingyang He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Wenjin Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Kexin Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhengxian Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
6
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Cutaneotrichosporon curvatum and Yarrowia lipolytica as key players for green chemistry: efficient oil producers from food waste via the carboxylate platform. Bioengineered 2023; 14:2286723. [PMID: 38010763 PMCID: PMC10761111 DOI: 10.1080/21655979.2023.2286723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Cutaneotrichosporon curvatum and Yarrowia lipolytica can accumulate microbial oils using short-chain fatty acids (SCFA) as carbon sources. SCFAs-rich media often contain significant amounts of nitrogen that prevent high carbon:nitrogen (C:N) ratios necessary to boost lipid production. This work assessed the intrinsic ability of C. curvatum and Y. lipolytica to produce high amounts of microbial oils from these unusual carbon sources. Results demonstrated that minor differences in SCFA concentration (only 2 g/L) had a significant effect on yeast growth and lipid production. A C:N of 80 promoted yeast growth at all SCFA concentrations and favored SCFA consumption at 19 g/L SCFAs. The different SCFA uptake preferences in C. curvatum and Y. lipolytica highlighted the importance of considering the SCFA profile to select a suitable yeast strain for microbial oils production. At the most challenging SCFA concentration (19 g/L), 57.2% ±1.6% (w/w) and 78.4 ± 0.6% (w/w) lipid content were obtained in C. curvatum and Y. lipolytica, respectively. These values are among the highest reported for wild-type strains. To circumvent the challenges associated with media with high nitrogen content, this report also proved struvite precipitation as an effective method for increasing lipid production (from 17.9 ± 3.9% (w/w) to 41.9 ± 2.6% (w/w)) after nitrogen removal in food waste-derived media.
Collapse
Affiliation(s)
| | | | - Cristina González-Fernández
- Biotechnological Processes Unit, Móstoles (Madrid), Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| |
Collapse
|
7
|
Dulermo T, Lejeune C, Aybeke E, Abreu S, Bleton J, David M, Deniset-Besseau A, Chaminade P, Thibessard A, Leblond P, Virolle MJ. Genome Analysis of a Variant of Streptomyces coelicolor M145 with High Lipid Content and Poor Ability to Synthetize Antibiotics. Microorganisms 2023; 11:1470. [PMID: 37374972 DOI: 10.3390/microorganisms11061470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Streptomyces coelicolor M145 is a model strain extensively studied to elucidate the regulation of antibiotic biosynthesis in Streptomyces species. This strain abundantly produces the blue polyketide antibiotic, actinorhodin (ACT), and has a low lipid content. In a process designed to delete the gene encoding the isocitrate lyase (sco0982) of the glyoxylate cycle, an unexpected variant of S. coelicolor was obtained besides bona fide sco0982 deletion mutants. This variant produces 7- to 15-fold less ACT and has a 3-fold higher triacylglycerol and phosphatidylethanolamine content than the original strain. The genome of this variant was sequenced and revealed that 704 genes were deleted (9% of total number of genes) through deletions of various sizes accompanied by the massive loss of mobile genetic elements. Some deletions include genes whose absence could be related to the high total lipid content of this variant such as those encoding enzymes of the TCA and glyoxylate cycles, enzymes involved in nitrogen assimilation as well as enzymes belonging to some polyketide and possibly trehalose biosynthetic pathways. The characteristics of this deleted variant of S. coelicolor are consistent with the existence of the previously reported negative correlation existing between lipid content and antibiotic production in Streptomyces species.
Collapse
Affiliation(s)
- Thierry Dulermo
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Clara Lejeune
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ece Aybeke
- Université Paris-Saclay, CNRS, CEA, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Sonia Abreu
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | - Jean Bleton
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | - Michelle David
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, CEA, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Pierre Chaminade
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | | | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Sapsirisuk S, Polburee P, Lorliam W, Limtong S. Discovery of Oleaginous Yeast from Mountain Forest Soil in Thailand. J Fungi (Basel) 2022; 8:1100. [PMID: 36294665 PMCID: PMC9605381 DOI: 10.3390/jof8101100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/04/2023] Open
Abstract
As an interesting alternative microbial platform for the sustainable synthesis of oleochemical building blocks and biofuels, oleaginous yeasts are increasing in both quantity and diversity. In this study, oleaginous yeast species from northern Thailand were discovered to add to the topology. A total of 127 yeast strains were isolated from 22 forest soil samples collected from mountainous areas. They were identified by an analysis of the D1/D2 domain of the large subunit rRNA (LSU rRNA) gene sequences to be 13 species. The most frequently isolated species were Lipomyces tetrasporus and Lipomyces starkeyi. Based on the cellular lipid content determination, 78 strains of ten yeast species, and two potential new yeast that which accumulated over 20% of dry biomass, were found to be oleaginous yeast strains. Among the oleaginous species detected, Papiliotrema terrestris and Papiliotrema flavescens have never been reported as oleaginous yeast before. In addition, none of the species in the genera Piskurozyma and Hannaella were found to be oleaginous yeast. L. tetrasporus SWU-NGP 2-5 accumulated the highest lipid content of 74.26% dry biomass, whereas Lipomyces mesembrius SWU-NGP 14-6 revealed the highest lipid quantity at 5.20 ± 0.03 g L-1. The fatty acid profiles of the selected oleaginous yeasts varied depending on the strain and suitability for biodiesel production.
Collapse
Affiliation(s)
- Sirawich Sapsirisuk
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pirapan Polburee
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center, Kasetsart University, Bangkok 10900, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Special Issue on Application of Instrumental Methods for Food and Food By-Products Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The application of various analytical procedures and methods determining the properties and safety of food and food constituents is a particularly important topic when dealing with food and food by-product analyses [...]
Collapse
|
12
|
Brine and Post-Frying Oil Management in the Fish Processing Industry—A Concept Based on Oleaginous Yeast Culture. Processes (Basel) 2022. [DOI: 10.3390/pr10020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Waste management solutions including the valorization of waste materials in biotechnological processes is an important issue needing to be explored. A significant amount of waste is being generated by the food industry. In this study, an attempt was made to utilize two fish industry wastes simultaneously—waste brine and post-frying oil from frying fish fillets in Yarrowia lipolytica culture with high single cell oil synthesis yield. Oxygenation in the culture medium had a positive effect on the biosynthesis efficiency of microbial oil, resulting in the highest content of lipids in yeast cells at the level of 0.431 g/g dm (dry mass). Y. lipolytica yeast preferentially accumulated oleic acid and linoleic acid, and the high content of linolenic acid, valuable from a nutritional point of view, was also found in microbial oil. This study proved that the use of post-frying rapeseed oil gives a chance to obtain valuable storage lipids in Y. lipolytica yeast cells via ex novo biosynthesis pathway. Furthermore, the wastewater stream could be limited using a waste brine as a solvent in medium preparation, but the brine share should not exceed 30% so as not to inhibit yeast cell growth.
Collapse
|