1
|
Priyanka G, Singiri JR, Adler-Agmon Z, Sannidhi S, Daida S, Novoplansky N, Grafi G. Detailed analysis of agro-industrial byproducts/wastes to enable efficient sorting for various agro-industrial applications. BIORESOUR BIOPROCESS 2024; 11:45. [PMID: 38703254 PMCID: PMC11069496 DOI: 10.1186/s40643-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Agriculture-based industries generate huge amounts of byproducts/wastes every year, which are not exploited or disposed efficiently posing an environmental problem with implications to human and animal health. Finding strategies to increase the recycling of agro-industrial byproducts/wastes (AIBWs) is a primary objective of the current study. A thorough examination of AIBWs in conjunction with experimental research is proposed to facilitate sorting for various agro-industrial applications and consequently increasing byproduct/waste utilization. Accordingly, two sustainable, locally available sources of AIBWs, namely, wheat bran (WB) and garlic straw and peels (GSP) were studied in detail including content and composition of proteins, phytohormones and nutritional elements, as well as the effect of AIBW extracts on plant and microbial growth. Hundreds of proteins were recovered from AIBW mainly from WBs, including chaperons, metabolite and protein modifying enzymes, and antimicrobial proteins. In-gel assays showed that WB and GSP possess high protease and nuclease activities. Conspicuously, phytohormone analysis of AIBWs revealed the presence of high levels of strigolactones, stimulants of seed germination of root parasitic weeds, as well as indole acetic acid (IAA) and abscisic acid (ABA). Garlic straw extract strongly inhibited germination of the weed Amaranthus palmeri but not of Abutilon theophrasti and all examined AIBWs significantly affected post-germination growth. Bacterial growth was strongly inhibited by garlic straw, but enhanced by WBs, which can be used at least partly as a bacterial growth medium. Thus, an in-depth examination of AIBW characteristics will enable appropriate sorting for diverse agro-industrial applications, which will increase their utilization and consequently their economic value.
Collapse
Affiliation(s)
- Govindegowda Priyanka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Zachor Adler-Agmon
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Sasank Sannidhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Spurthi Daida
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
2
|
Xu Y, Xuan X, Gao R, Xie G. Increased Expression Levels of Thermophilic Serine Protease TTHA0724 through Signal Peptide Screening in Bacillus subtilis and Applications of the Enzyme. Int J Mol Sci 2023; 24:15950. [PMID: 37958933 PMCID: PMC10648325 DOI: 10.3390/ijms242115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The thermostable protease TTHA0724 derived from Thermus thermophilus HB8 is an ideal industrial washing enzyme due to its thermophilic characteristics; although it can be expressed in Escherichia coli via pET-22b, high yields are difficult to achieve, leading to frequent autolysis of the host. This paper details the development of a signal peptide library in the expression system of B. subtilis and the optimization of signal peptides for enhanced extracellular expression of TTHA0724. When B. subtilis was used as the host and the optimized signal peptide was used, the expression level of TTHA0724 was 16.7 times higher compared with E. coli. B. subtilis as an expression host does not change the characteristics of TTHA0724. The potential application fields of TTHA0724 are studied. TTHA0724 can be used as a detergent additive at 60 °C, which can sterilize and eliminate mites while thoroughly cleaning protein stains. Soybean meal enzymatic hydrolysis with TTHA0724 at a high temperature produced a higher content of antioxidant peptides. These results indicate that TTHA0724 has great potential for industrial applications.
Collapse
Affiliation(s)
- Yiwen Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Xiaoran Xuan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| |
Collapse
|
3
|
Vicaria JM, Herrera-Márquez O, Serrano-Haro M, Vidal A, Jurado E, Jiménez-Pérez JL. Optimization of surfactants formulations to stabilise proteases and amylases. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|