Kulikova Y, Sukhikh S, Babich O, Yuliya M, Krasnovskikh M, Noskova S. Feasibility of Old Bark and Wood Waste Recycling.
PLANTS (BASEL, SWITZERLAND) 2022;
11:1549. [PMID:
35736700 PMCID:
PMC9230676 DOI:
10.3390/plants11121549]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The pulp and paper industry leads to the formation of significant amounts of bark and wood waste (BWW), which is mostly dumped, causing negative climate and environmental impacts. This article presents an overview of methods for recycling BWW, as well as the results of assessing the resource potential of old bark waste based on physicochemical and thermal analysis. It was found that using BWW as a plant-growing substrate is challenging because it was observed that bark waste is phytotoxic. The C:N waste ratio is far from optimum; moreover, it has a low biodegradation rate (less than 0.15% per year). The calorific value content of BWW ranged from 7.7 to 18.9 MJ/kg on d.m., the ash content was from 4% to 22%, and the initial moisture content was from 60.8% to 74.9%, which allowed us to draw conclusions about the feasibility of using hydrothermal methods for their processing to obtain biofuel and for the unreasonableness of using traditional thermal methods (combustion, pyrolysis, gasification).
Collapse