1
|
Erem E, Kilic-Akyilmaz M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr Rev Food Sci Food Saf 2024; 23:e13402. [PMID: 39030804 DOI: 10.1111/1541-4337.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
Collapse
Affiliation(s)
- Erenay Erem
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
2
|
Hidalgo-Fuentes B, de Jesús-José E, Cabrera-Hidalgo ADJ, Sandoval-Castilla O, Espinosa-Solares T, González-Reza RM, Zambrano-Zaragoza ML, Liceaga AM, Aguilar-Toalá JE. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods 2024; 13:844. [PMID: 38540834 PMCID: PMC10969568 DOI: 10.3390/foods13060844] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Plant-based beverages have gained consumers' attention for being the main substitutes for dairy milk, especially for people with lactose intolerance, milk allergies, and a prevalence of hypercholesterolemia. Moreover, there is a growing demand for a more sustainable diet and plant-based lifestyle due to concerns related to animal wellbeing, environmental impacts linked to dairy production, and the rising cost of animal-derived foods. However, there are some factors that restrict plant-based beverage consumption, including their nutritional quality and poor sensory profile. In this context, fermentation processes can contribute to the improvement of their sensory properties, nutritional composition, and functional/bioactive profile. In particular, the fermentation process can enhance flavor compounds (e.g., acetoin and acetic acid) while decreasing off-flavor components (e.g., hexanal and hexanol) in the substrate. Furthermore, it enhances the digestibility and bioavailability of nutrients, leading to increased levels of vitamins (e.g., ascorbic acid and B complex), amino acids (e.g., methionine and tryptophan), and proteins, while simultaneously decreasing the presence of anti-nutritional factors (e.g., phytic acid and saponins). In contrast, plant-based fermented beverages have been demonstrated to possess diverse bioactive compounds (e.g., polyphenols and peptides) with different biological properties (e.g., antioxidant, anti-inflammatory, and antihypertensive). Therefore, this article provides an overview of plant-based fermented beverages including their production, technological aspects, and health benefits.
Collapse
Affiliation(s)
- Belén Hidalgo-Fuentes
- Licenciatura en Ciencia y Tecnología de Alimentos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico (E.d.J.-J.)
| | - Edgar de Jesús-José
- Licenciatura en Ciencia y Tecnología de Alimentos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico (E.d.J.-J.)
| | - Anselmo de J. Cabrera-Hidalgo
- TecNM-Instituto Tecnológico Superior de Tlatlauquitepec (ITSTL), Carretera Federal Amozoc-Nautla km 122+600 Almoloni, Tlatlauquitepec 73907, Puebla, Mexico;
| | - Ofelia Sandoval-Castilla
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Texcoco 56230, Estado de Mexico, Mexico
| | - Teodoro Espinosa-Solares
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Texcoco 56230, Estado de Mexico, Mexico
- Agricultural Research and Extension Center, Southern University, Baton Rouge, LA 70813, USA
| | - Ricardo. M. González-Reza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de Mexico, Mexico (M.L.Z.-Z.)
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de Mexico, Mexico (M.L.Z.-Z.)
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA
| | - José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico
| |
Collapse
|
3
|
Drozłowska E, Starowicz M, Śmietana N, Krupa-Kozak U, Łopusiewicz Ł. Spray-Drying Impact the Physicochemical Properties and Formation of Maillard Reaction Products Contributing to Antioxidant Activity of Camelina Press Cake Extract. Antioxidants (Basel) 2023; 12:919. [PMID: 37107293 PMCID: PMC10135720 DOI: 10.3390/antiox12040919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spray-drying is one of the most popular techniques in the food industry for converting liquid material from a fluid state into a form of dried particles to produce encapsulated or instant products. Instant products are considered as convenient foods; moreover, the goal of encapsulation is to close the bioactive compounds in a shell, preventing them from being affected by environmental factors. The purpose of this study was to examine the influence of spray-drying conditions, in particular three inlet temperatures, on the physicochemical and antioxidant properties of powders obtained from Camelina Press Cake Extract (CPE). The CPE was spray-dried at 140 °C, 160 °C and 180 °C. The solubility, Carr and Hausner Indexes, tapped densities and water activity of the powders were analyzed. The structural changes were also detected using FTIR spectroscopy. Additionally, the characteristics of the initial and reconstituted samples and their rheological properties were evaluated. The antioxidant potential, total polyphenols and flavonoids content, free amino acids, and the Maillard reaction products contents in the spray-dried powders were also evaluated. The results indicate a cascade of changes between the initial and reconstituted samples, and important changes in the bioactive potential of samples. The inlet temperature significantly influenced the solubility, flowability and particle sizes of the powders, as well as Maillard products formation. The results of the rheological measurements illustrate the changes after the reconstitution of extracts. This study indicates the optimal parameters of CPE spray-drying, those that yield favorable physicochemical and functional values, which may open up a promising path for CPE valorization, indicating its potential and the possibilities of its use.
Collapse
Affiliation(s)
- Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| | - Małgorzata Starowicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland
| | - Natalia Śmietana
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| | - Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| |
Collapse
|
4
|
Nakov G, Trajkovska B, Atanasova-Pancevska N, Daniloski D, Ivanova N, Lučan Čolić M, Jukić M, Lukinac J. The Influence of the Addition of Hemp Press Cake Flour on the Properties of Bovine and Ovine Yoghurts. Foods 2023; 12:foods12050958. [PMID: 36900475 PMCID: PMC10001388 DOI: 10.3390/foods12050958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Hemp press cake flour (HPCF) is a by-product of hemp oil production rich in proteins, carbohydrates, minerals, vitamins, oleochemicals, and phytochemicals. The purpose of this study was to investigate how the addition of HPCF to bovine and ovine plain yoghurts at concentrations of 0%, 2%, 4%, 6%, 8%, and 10% could change the physicochemical, microbiological, and sensory properties of the yoghurts, focusing on the improvement of quality and antioxidant activity, and the issue of food by-products and their utilisation. The results showed that the addition of HPCF to yoghurts significantly affected their properties, including an increase in pH and decrease in titratable acidity, change in colour to darker, reddish or yellowish hue, and a rise in total polyphenols and antioxidant activity during storage. Yoghurts fortified with 4% and 6% HPCF exhibited the best sensory properties, thus maintaining viable starter counts in the yoghurts during the study period. There were no statistically significant differences between the control yoghurts and the samples with 4% added HPCF in terms of overall sensory score while maintaining viable starter counts during the seven-day storage. These results suggest that the addition of HPCF to yoghurts can improve product quality and create functional products and may have potential in sustainable food waste management.
Collapse
Affiliation(s)
- Gjore Nakov
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Biljana Trajkovska
- Faculty of Biotechnical Sciences, University “St. Kliment Ohridski”, 7000 Bitola, North Macedonia
| | - Natalija Atanasova-Pancevska
- Faculty of Natural Sciences and Mathematics-Skopje, Department of Microbiology and Microbial Biotechnology, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Nastia Ivanova
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Mirela Lučan Čolić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31224308
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
5
|
The Influence of Lactic Acid Bacteria Fermentation on the Bioactivity of Crayfish (Faxonius limosus) Meat. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, new raw materials have been sought for use in processing. This category certainly includes invasive crayfish Faxonius limosus. One of the problems associated with their use is their short microbiological shelf life. Therefore, in the research presented here, an attempt was made to ferment crayfish meat with strains of Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus casei, and yogurt culture. The analyses included an evaluation of changes in the microbial quality of the material, the content of free amino acids, reducing sugars, ascorbic acid, and the antioxidant properties of the fermented meat. Changes in the canthaxanthin content and the number of sulfhydryl groups and disulfide bridges were also evaluated. The study showed that carrying out lactic fermentation resulted in a decrease in meat pH (8.00 to 7.35–6.94, depending on the starter culture). Moreover, the meat was characterized by an increase in FRAP (2.99 to 3.60–4.06 mg AAE/g), ABTS (2.15 to 2.85–3.50 μmol Trolox/g), and reducing power (5.53 to 6.28–14.25 μmol Trolox/g). In addition, the study showed a favorable effect of fermentation on the content of sulfhydryl groups in the meat as well as for ascorbic acid content. The results obtained can serve as a starting point for the further development of fermented products based on crayfish meat.
Collapse
|
6
|
Fermented Plant Beverages Stabilized with Microemulsion: Confirmation of Probiotic Properties and Antioxidant Activity. FERMENTATION 2022. [DOI: 10.3390/fermentation8120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to experimentally confirm the probiotic properties and antioxidant activity of plant fermented beverages stabilized with microemulsion. The object of the study were beverages obtained from hemp seeds and fermented with Bifidobacterium longum. To stabilize the plant base, the microemulsion with a bioactive substance (curcumin) was introduced with simultaneous ultrasound treatment. A significant increase in the viscosity of beverages with microcellulose-stabilized microemulsion was noted. Non-fermented plant beverages are characterized by their smaller diameter and distribution of particles in the micro-range, from 0.81 to 6.5 µm. When Twin-stabilized microemulsion was added to beverages, a monodisperse distribution of particles sufficiently small in diameter was observed. A significant increase of 29.4–33.6% in the antioxidant activity of plant beverages stabilized by ME with curcumin was established. A maximum concentration of flavonoids was noted in non-fermented plant beverages containing microemulsion. The results of this study proved the possibility of obtaining fermented plant beverages with identified probiotic and antioxidant properties. A positive effect of stabilizing with a microemulsion loaded with biologically active components on the development of probiotic microorganism cultures in the system of fermented plant products and the formation of their antioxidant activity was established.
Collapse
|
7
|
Plant-based pecan nut cake beverage enrichment of phytochemicals and antioxidant properties using multi-stage block freeze concentration. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractPecan nut (Carya illinoinensis) processing to obtain oil generates circa 37% of press cake, which is currently underutilized and primarily employed as animal feed. Due to its nutritional- and bioactive-rich composition, pecan nut cake (PNC) can be used as raw material for plant-based beverages, whose properties may be enhanced using a non-thermal technology based on block freeze concentration (BFC). The effect of five-stage BFC on total solids content (TSC), pH, color parameters, retention of phytochemicals, and the antioxidant activity (AA) of a pecan nut cake beverage (PNB) was assessed in this work. BFC afforded 98% (w/w) solids retention after three stages and 85% efficiency after four stages. The process also provided a 254% concentration factor in stage 5. In the last step, approximately a 64% increase in TSC and a slight decrease (7.3%) in pH compared to the control PNB was observed. In addition, total phenolic compounds, condensed tannins, total flavonols, and AA were significantly (P < 0.05) improved after the BFC, resulting in a 2.6-10.2- and 1.9-5.8-fold increase in phytochemicals and antioxidants, respectively. On the other hand, BFC caused the darkening of concentrates due to TSC and bioactive compounds retention. The processing strategy evaluated herein indicated a great potential of PNC as a raw material for obtaining high-quality ingredients for the food industry, which may reduce agro-industrial waste production and add value to a coproduct rich in nutrients and biocompounds with potential biological activity.
Graphical Abstract
Collapse
|
8
|
The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabis sativa (hemp) is a plant considered to be abundant in bioactive compounds. The increasing production of hemp oil is leaving considerable amounts of hemp press cakes (HPC), which have not been sufficiently managed so far. One of the directions of development of plant-based food is the use of by-products of the agri-food industry in accordance with the idea of zero waste and the circular economy, so the purpose of this study was to determine the possibility of HPC fermentation using yogurt and kefir cultures and to determine the effect of the type of starter on the properties of the products. In the present study, starter cultures of yogurt (YO 122) and kefir (commercial grains) were used for HPC fermentation. Changes in lactic acid bacteria (LAB) and yeast population, pH, acidity, the content of bioactive compounds by spectrophotometric methods (proteins, amino acids, polyphenols, flavonoids, reducing sugars) and antioxidant activity (DDPH, ABTS, FRAP and reducing power) were determined. The results showed that it was possible to develop high-value beverages based on HPC with high fermentation efficiency: survivability of LAB and yeast (>106 CFU/g) and acidification (pH in a range of 4.82–6.36 and 5.34–6.49 for yogurt and kefir culture, respectively). Moreover, the stability of hemp protein, with its variable free amino acid composition, antioxidant potential and presented changes in polyphenolic content, was observed during storage. The presented results show a new way to manage HPC as an oil industry residue by using it as a raw material for the development of a bioactive food product and illustrate the relationship between applied starter culture, the direction of fermentation and changes in the content of bioactive compounds.
Collapse
|
9
|
The Biotransformation of Lupine Seeds by Lactic Acid Bacteria and Penicillium camemberti into a Plant-Based Camembert Alternative, and Its Physicochemical Changes during 7 Weeks of Ripening. FERMENTATION 2022. [DOI: 10.3390/fermentation8090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been increasing consumer interest and research into plant-based dairy alternatives, due to the increasingly negative impact of animal products on human health, animal welfare, and the environment. The purpose of this study was to investigate the physicochemical and microbiological changes in a Camembert alternative based on the seeds of sweet lupine (Lupinus angustifolius L cv. ‘Boregine’). After heat treatment and homogenization, the seeds were incubated with lactic acid bacteria (LAB) and Penicillium camemberti mold. After fermentation at room temperature, the samples were stored at 12 °C for 14 days, and then ripened until day 49 at 6 °C. Changes in microbial population, acidity, texture, content of polyphenols, flavonoids, reducing sugars, and free amino acids were monitored. In addition, the antioxidant capacity of the samples during ripening was determined. The results showed that LAB and fungi were able to grow well in the lupine matrix. Initially, a decrease in pH was observed, while in the further stages of ripening, alkalization of the product linked with progressive proteolysis associated with an increase in free amino acid content was noted. Hydrolysis of polysaccharides and an increase in antioxidant activity were observed. This indicates the potential of lupine seeds as a raw material for the development of a new group of plant-based ripened cheese alternatives.
Collapse
|