1
|
Sinha S, Gajewski JB, Tarcan T, Van Huele A, Cruz F, Martinez EM, Przydacz M, Bou Kheir G, Lombardo R, Wein A, Abrams P. Is it Possible to Regenerate the Underactive Detrusor? Part 2 Electrical Stimulation Therapies, Treatment of Bladder Outlet Obstruction, Constipation, and Pelvic Floor Disorders ICI-RS 2024. Neurourol Urodyn 2024. [PMID: 39370866 DOI: 10.1002/nau.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Detrusor muscle weakness is commonly noted on urodynamics in patients with refractory voiding difficulty. No clinical therapy has been proven to augment the strength of a detrusor contraction. METHODS This subject was discussed at a think-tank at the International Consultation on Incontinence-Research Society (ICI-RS) held in Bristol, June 2024. The discussions of the think-tank are being published in two parts. This second part discusses the role of electrical stimulation therapies, treatment of bladder outlet obstruction, constipation, and pelvic floor disorders, in the enhancement of strength of a detrusor contraction. RESULTS Electrical stimulation therapies, specifically sacral neuromodulation, have long been used in the salvage of patients with refractory nonobstructive voiding dysfunction. Clinical improvements can be noted in men following bladder outlet resistance reduction surgery especially, though not limited to those with demonstrable obstruction. Some patients may also show improvement with pelvic floor relaxation therapies and constipation care. However, there is a lack of high-quality urodynamic data to demonstrate an improvement in the strength of a detrusor contraction with these therapies. The think-tank recommends standards for future clinical studies examining treatments aimed at improving an underactive detrusor. CONCLUSIONS Studies need to examine whether clinical improvement following treatment of patients with an underactive detrusor is associated with improvement in strength of the detrusor contraction. New therapeutic options should apply specified standards for assessing and reporting the impact on detrusor contraction.
Collapse
Affiliation(s)
- Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, India
| | | | - Tufan Tarcan
- Departments of Urology, Marmara University School of Medicine and Koç University School of Medicine, Istanbul, Turkey
| | | | - Francisco Cruz
- Departamento de Urologia, Hospital de S. João, Faculdade de Medicina do Porto, Porto, Portugal
| | - Esther M Martinez
- Department of Urology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | | | | | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Mancini V, Damaser MS, Chermansky C, Ochoa CD, Hashim H, Przydacz M, Hervé F, Martino L, Abrams P. Can we improve techniques and patients' selection for nerve stimulation suitable for lower urinary tract dysfunctions? ICI-RS 2023. Neurourol Urodyn 2024; 43:1420-1430. [PMID: 38048061 DOI: 10.1002/nau.25346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
AIMS Lower urinary tract dysfunctions (LUTD) are very common and, importantly, affect patients' quality of life (QoL). LUTD can range from urinary retention to urgency incontinence and includes a variety of symptoms. Nerve stimulation (NS) is an accepted widespread treatment with documented success for LUTD and is used widely. The aim of this review is to report the results of the discussion about how to improve the outcomes of NS for LUTD treatment. METHODS During its 2023 meeting in Bristol, the International Consultation on Incontinence Research Society discussed a literature review, and there was an expert consensus discussion focused on the emerging awareness of NS suitable for LUTD. RESULTS The consensus discussed how to improve techniques and patients' selection in NS, and high-priority research questions were identified. CONCLUSIONS Technique improvement, device programming, and patient selection are the goals of the current approach to NS. The conditional nerve stimulation with minimally invasive wireless systems and tailored algorithms hold promise for improving NS for LUTD, particularly for patients with neurogenic bladder who represent the new extended population to be treated.
Collapse
Affiliation(s)
- Vito Mancini
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, and Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Carolina D Ochoa
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Hashim Hashim
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Mikolaj Przydacz
- Department of Urology, Jagiellonian University Medical College, Krakow, Poland
| | - François Hervé
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Leonardo Martino
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Paul Abrams
- Bristol Urological Institute, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Lee JH, Jang TM, Shin JW, Lim BH, Rajaram K, Han WB, Ko GJ, Yang SM, Han S, Kim DJ, Kang H, Lim JH, Lee KS, Park E, Hwang SW. Wireless, Fully Implantable and Expandable Electronic System for Bidirectional Electrical Neuromodulation of the Urinary Bladder. ACS NANO 2023; 17:8511-8520. [PMID: 37070621 DOI: 10.1021/acsnano.3c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Current standard clinical options for patients with detrusor underactivity (DUA) or underactive bladder─the inability to release urine naturally─include the use of medications, voiding techniques, and intermittent catheterization, for which the patient inserts a tube directly into the urethra to eliminate urine. Although those are life-saving techniques, there are still unfavorable side effects, including urinary tract infection (UTI), urethritis, irritation, and discomfort. Here, we report a wireless, fully implantable, and expandable electronic complex that enables elaborate management of abnormal bladder function via seamless integrations with the urinary bladder. Such electronics can not only record multiple physiological parameters simultaneously but also provide direct electrical stimulation based on a feedback control system. Uniform distribution of multiple stimulation electrodes via mesh-type geometry realizes low-impedance characteristics, which improves voiding/urination efficiency at the desired times. In vivo evaluations using live, free-moving animal models demonstrate system-level functionality.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong Hee Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyu-Sung Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Biomedical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Novacescu D, Nesiu A, Bardan R, Latcu SC, Dema VF, Croitor A, Raica M, Cut TG, Walter J, Cumpanas AA. Rats, Neuregulins and Radical Prostatectomy: A Conceptual Overview. J Clin Med 2023; 12:jcm12062208. [PMID: 36983210 PMCID: PMC10051646 DOI: 10.3390/jcm12062208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In the contemporary era of early detection, with mostly curative initial treatment for prostate cancer (PC), mortality rates have significantly diminished. In addition, mean age at initial PC diagnosis has decreased. Despite technical advancements, the probability of erectile function (EF) recovery post radical prostatectomy (RP) has not significantly changed throughout the last decade. Due to virtually unavoidable intraoperative cavernous nerve (CN) lesions and operations with younger patients, post-RP erectile dysfunction (ED) has now begun affecting these younger patients. To address this pervasive limitation, a plethora of CN lesion animal model investigations have analyzed the use of systemic/local treatments for EF recovery post-RP. Most promisingly, neuregulins (NRGs) have demonstrated neurotrophic effects in both neurodegenerative disease and peripheral nerve injury models. Recently, glial growth factor 2 (GGF2) has demonstrated far superior, dose-dependent, neuroprotective/restorative effects in the CN injury rat model, as compared to previous therapeutic counterparts. Although potentially impactful, these initial findings remain limited and under-investigated. In an effort to aid clinicians, our paper reviews post-RP ED pathogenesis and currently available therapeutic tools. To stimulate further experimentation, a standardized preparation protocol and in-depth analysis of applications for the CN injury rat model is provided. Lastly, we report on NRGs, such as GGF2, and their potentially revolutionary clinical applications, in hopes of identifying relevant future research directions.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandru Nesiu
- Department Medicine, Discipline of Urology, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, Nr. 86, 310414 Arad, Romania
- Correspondence: ; Tel.: +40-753521488
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Vlad Filodel Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexei Croitor
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Marius Raica
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - James Walter
- Emeritus, Department of Urology, Loyola Medical Center, Maywood, IL 60153, USA
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|