1
|
Rahman ML, Mandal S, Das P, Ashraf GJ, Dua TK, Paul P, Nandi G, Sahu R. Evaluation of maceration, microwave, ultrasound-assisted extraction methods on free, esterified and bound phenolic profile and antioxidant activity of black rice. Z NATURFORSCH C 2023; 78:389-398. [PMID: 37682027 DOI: 10.1515/znc-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Black rice (Oryza sativa L.) is a rich source of phenolics and anthocyanins. It was aimed to investigate the effect of different extraction methods such as conventional solvent extraction, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) on antioxidant activity and phenolic profiling of black rice free, esterified, and bound phenolics fractions. Spectrophotometric methods were used to evaluate antioxidant activity and HPTLC was used for phenolics profiling. The highest content of % yield, total anthocyanin (TAC), total phenolic (TPC), and total flavonoid (TFC) contents were detected in MAE. It was also observed that antioxidant activity based on DPPH, ABTS, superoxide radical-scavenging and ferric reducing antioxidant power (FRAP) assays showed highest activity in MAE. Eight phenolic compounds were identified and quantified by a validated HPTLC method. MAE showed most abundant phenolic compounds. A significant positive correlation was established between % yield, total phenolic content, and total flavonoid content (p < 0.05) where a significant negative correlation was established between % yield, TPC, and TFC with IC50 of antioxidant activity (p < 0.05). Diverse phenolic contents and antioxidant activity were studied with different forms of phenolics with the different extraction methods. It designates that the extraction techniques had effects on the bioactive compounds as well biological properties.
Collapse
Affiliation(s)
- Md Latifur Rahman
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Subhajit Mandal
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Gouhar Jahan Ashraf
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
2
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|