1
|
Yan Y, Zou M, Tang C, Ao H, He L, Qiu S, Li C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem 2024; 460:140676. [PMID: 39126943 DOI: 10.1016/j.foodchem.2024.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingxin Zou
- Guizhou Tangzhuag Chinese Liquor Limited Company, Zunyi 564500, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Hongyan Ao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Laping He
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Hinojosa-Avila CR, García-Gamboa R, Chedraui-Urrea JJT, García-Cayuela T. Exploring the potential of probiotic-enriched beer: Microorganisms, fermentation strategies, sensory attributes, and health implications. Food Res Int 2024; 175:113717. [PMID: 38129037 DOI: 10.1016/j.foodres.2023.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Probiotic-enriched beers have emerged as an innovative solution for delivering beneficial microorganisms, particularly appealing to consumers seeking non-dairy options. However, navigating the complex beer environment presents challenges in effectively cultivating specific probiotic strains. This review aims to promote innovation and distinctiveness within the brewing industry by providing insights into current research on the integration of probiotic microorganisms into beer production, thereby creating a functional beverage. The review explores the effects of probiotic incorporation on the functional, technological, and sensory attributes of beer, distinguishing contributions from bacterial and yeast, as well as potential health benefits. Probiotic microorganisms encounter hurdles during beer production, including ethanol, hops, CO2 levels, pH, oxygen, and nutrients. Ethanol tolerance mechanisms vary among bacteria and yeasts, with specific lactic acid bacteria showing resistance to hop compounds. Hops, crucial for beer categorization, exert a timing-dependent impact on probiotics-early isomerization impedes growth, while late additions yield non-isomerized antibacterial properties. Effective probiotic integration necessitates precise post-fermentation addition stages to ensure viability and flavor. The sensory impact and consumer reception of probiotic-enriched beers require further exploration. Probiotics must endure storage conditions to qualify as functional beer, while limited research investigates health advantages, urging enhanced production techniques, sensory optimization, and clinical validation.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Geraris Kartelias I, Karantonis HC, Giaouris E, Panagiotakopoulos I, Nasopoulou C. Kombucha Fermentation of Olympus Mountain Tea ( Sideritis scardica) Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties. Foods 2023; 12:3496. [PMID: 37761205 PMCID: PMC10528074 DOI: 10.3390/foods12183496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study implemented kombucha fermentation of Olympus Mountain tea (Sideritis scardica) sweetened with honey (OMTWH) in order to investigate the potential for producing a novel beverage with functional properties. The increase in the total count of bacteria and yeast suggests that the OMTWH acts as a viable substrate for supporting the proliferation of the microorganisms of the Kombucha symbiotic culture. The fermentation resulted in a reduction in pH and increased total titratable acidity. After fermentation, a statistically significant increase in the vitamins C, B1, B2, B6, B7, and B12 content was observed (p < 0.05). Total phenolics and antioxidant activity of the fermented beverage was significantly enhanced, as assessed by the method of Folin-Ciocalteu and ABTS assay, respectively. Results revealed that OMTWH had a potent inhibitory activity of α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase; OMTWH fermented with a kombucha consortium exhibited even higher inhibition. Hence, the process of kombucha fermentation can convert OMTWH into a novel beverage with enhanced functional properties.
Collapse
Affiliation(s)
- Ioannis Geraris Kartelias
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Haralabos Christos Karantonis
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Ioannis Panagiotakopoulos
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| |
Collapse
|
4
|
Pokorski P, Trząskowska M. In Situ Inactivation of Selected Bacillus Strains in Brewer's Spent Grain during Fermentation by Lactococcus lactis ATCC 11454-The Possibility of Post-Production Residues Management. Foods 2023; 12:2279. [PMID: 37372490 DOI: 10.3390/foods12122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The safety and quality of post-production residues is essential before they can be reused. Both to explore the possibility of reuse as a fermentation medium and the context of pathogens' inactivation, the research aimed to characterize the fermentation system of L. lactis ATCC 11454 and brewer's spent grain, malt and barley, especially to in situ inactivation of selected Bacillus strains during the fermentation and storage. Barley products were milled, autoclaved, hydrated and fermented with L. lactis ATCC 11454. Then, the co-fermentation with Bacillus strains was carried out. The amount of polyphenols in the samples ranged from 483.5 to 718.4 ug GAE g-1 and increased after 24 h fermentation with L. lactis ATCC 11454. The high viability of LAB in the fermented samples and after 7 days of storage at 4 °C (8 log CFU g-1) indicates the high nutrients bioavailability during the storage. Also, this co-fermentation on different barley products indicated a high reduction level (2 to 4 logs) of Bacillus due to the biosuppression effect of the LAB strain in this fermentation system. Brewer's spent grain (BSG) fermented with L. lactis ATCC 25 11454 produces a highly effective cell-free supernatant (CFS) for suppressing Bacillus strains. This was evident in both the inhibition zone and fluorescence analysis of bacteria viability. In conclusion, the obtained results justify the use of brewer's spent grain in selected food products, increasing their safety and nutritional value. This finding is highly beneficial in the sustainable management of post-production residues when current waste material can still serve as a source of food.
Collapse
Affiliation(s)
- Patryk Pokorski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|