1
|
Fetisov S, Esiukova E, Lobchuk O, Chubarenko I. Abundance and mass of plastic litter on sandy shore: Contribution of stormy events. MARINE POLLUTION BULLETIN 2024; 207:116911. [PMID: 39241369 DOI: 10.1016/j.marpolbul.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The accumulation of marine litter on beaches has a detrimental impact on the environment, human health, and recreational activities. A total of 116 monitoring surveys were conducted along the shore of the Kaliningrad region between 2019 and 2023. Sampling of anthropogenic and plastic litter (>0.5 cm) was carried out under various meteorological conditions on eight sandy beaches. The greatest abundance and mass of plastic marine litter (mean ± SE: 13.75 ± 8.61 items/m2 and 19.97 ± 5.92 gDW/m2, correspondingly) were observed in the aftermath of storms within beach-cast accumulation stains at the shoreline, where it was intermixed with organic debris. This is two orders of magnitude greater than the plastic litter contamination obtained using the OSPAR methodology at the same beach during fine weather (0.11 ± 0.01 items/m2, 0.33 ± 0.02 gDW/m2). The results suggest that the most effective strategy for beach cleaning is to implement it in the post-storm period.
Collapse
Affiliation(s)
- Sergei Fetisov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia.
| | - Elena Esiukova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| | - Olga Lobchuk
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| | - Irina Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nakhimovsky Prosp., Moscow 117997, Russia
| |
Collapse
|
2
|
Babich O, Ivanova S, Michaud P, Budenkova E, Kashirskikh E, Anokhova V, Sukhikh S. Fermentation of micro- and macroalgae as a way to produce value-added products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00827. [PMID: 38234329 PMCID: PMC10793092 DOI: 10.1016/j.btre.2023.e00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Fermentation of both microalgae and macroalgae is one of the most efficient methods of obtaining valuable value-added products due to the minimal environmental pollution and the availability of economic benefits, as algae do not require arable land and drift algae and algal bloom biomass are considered waste and must be recycled and their fermentation waste utilized. The compounds found in algae can be effectively used in the fuel, food, cosmetic, and pharmaceutical industries, depending on the type of fermentation used. Products such as methane and hydrogen can be produced by anaerobic digestion and dark fermentation of algae, and lactic acid and its polymers can be produced by lactic acid fermentation of algae. Article aims to provide an overview of the different types potential of micro- and macroalgae fermentation, the advantages and disadvantages of each type considered, and the economic feasibility of algal fermentation for the production of various value-added products.
Collapse
Affiliation(s)
- Olga Babich
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | | | - Egor Kashirskikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Veronika Anokhova
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| |
Collapse
|
3
|
Vasiliauskienė D, Pranskevičius M, Dauknys R, Urbonavičius J, Lukša J, Burko V, Zagorskis A. Changes in Microbiota Composition during the Anaerobic Digestion of Macroalgae in a Three-Stage Bioreactor. Microorganisms 2024; 12:109. [PMID: 38257937 PMCID: PMC10821162 DOI: 10.3390/microorganisms12010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of microalgae as a raw material for biogas production is promising. Macroalgae were mixed with cattle manure, wheat straw, and an inoculant from sewage sludge. Mixing macroalgae with co-substrates increased biogas and methane yield. The research was carried out using a three-stage bioreactor. During biogas production, the dynamics of the composition of the microbiota in the anaerobic chamber of the bioreactor was evaluated. The microbiota composition at different organic load rates (OLRs) of the bioreactor was evaluated. This study also demonstrated that in a three-stage bioreactor, a higher yield of methane in biogas was obtained compared to a single-stage bioreactor. It was found that the most active functional pathway of methane biosynthesis is PWY-6969, which proceeds via the TCA cycle V (2-oxoglutarate synthase). Microbiota composition and methane yield depended on added volatile solids (VSadded). During the research, it was found that after reducing the ORL from 2.44 to 1.09 kg VS/d, the methane yield increased from 175.2 L CH4/kg VSadded to 323.5 L CH4/kg VSadded.
Collapse
Affiliation(s)
- Dovilė Vasiliauskienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Mantas Pranskevičius
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Regimantas Dauknys
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Juliana Lukša
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, 10223 Vilnius, Lithuania; (D.V.); (J.U.); (J.L.)
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania
| | - Vadym Burko
- Department of Primary Science Institute of Modern Technologies, Pryazovskyi State Technical University, 87555 Mariupol, Ukraine;
| | - Alvydas Zagorskis
- Institute of Environmental Protection, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
- Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
4
|
Tolpeznikaite E, Starkute V, Zokaityte E, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Ruibys R, Rocha JM, Bartkiene E. Effect of solid-state fermentation and ultrasonication processes on antimicrobial and antioxidant properties of algae extracts. Front Nutr 2022; 9:990274. [PMID: 36091232 PMCID: PMC9453264 DOI: 10.3389/fnut.2022.990274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Algal biomass (AB) is prospective source of valuable compounds, however, Baltic Sea macroalgae have some challenges, because of their high microbial and chemical contamination. These problems can be solved, by using appropriate technologies for AG pre-treatment. The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on the antioxidant and antimicrobial characteristics of macro- (Cladophora rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and LUHS135 were developed and their characteristics were evaluated. The total phenolic compound content was determined from the calibration curve and expressed in mg of gallic acid equivalents; antioxidant activity was measured by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods. Antimicrobial activity was measured by using agar well diffusion assay and in a liquid medium. The highest DPPH• and ABTS•+ was shown by C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest FRAP - by non-pretreated C.rupestris and F.lumbricalis extract × LUHS135 combinations. Ultrasonicated samples inhibited four out of seven tested pathogens. Finally, the tested pre-treatments showed good perspectives and can be recommended for AB valorization.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Vytautas Magnus University, Agriculture Academy, Kaunas, Lithuania
| | - João M. Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Elena Bartkiene
| |
Collapse
|
5
|
Kulikova Y, Sukhikh S, Babich O, Yuliya M, Krasnovskikh M, Noskova S. Feasibility of Old Bark and Wood Waste Recycling. PLANTS (BASEL, SWITZERLAND) 2022; 11:1549. [PMID: 35736700 PMCID: PMC9230676 DOI: 10.3390/plants11121549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The pulp and paper industry leads to the formation of significant amounts of bark and wood waste (BWW), which is mostly dumped, causing negative climate and environmental impacts. This article presents an overview of methods for recycling BWW, as well as the results of assessing the resource potential of old bark waste based on physicochemical and thermal analysis. It was found that using BWW as a plant-growing substrate is challenging because it was observed that bark waste is phytotoxic. The C:N waste ratio is far from optimum; moreover, it has a low biodegradation rate (less than 0.15% per year). The calorific value content of BWW ranged from 7.7 to 18.9 MJ/kg on d.m., the ash content was from 4% to 22%, and the initial moisture content was from 60.8% to 74.9%, which allowed us to draw conclusions about the feasibility of using hydrothermal methods for their processing to obtain biofuel and for the unreasonableness of using traditional thermal methods (combustion, pyrolysis, gasification).
Collapse
Affiliation(s)
- Yuliya Kulikova
- Institute of Living Systems, Immanuel Kant BFU, 236016 Kaliningrad, Russia; (S.S.); (O.B.); (S.N.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant BFU, 236016 Kaliningrad, Russia; (S.S.); (O.B.); (S.N.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant BFU, 236016 Kaliningrad, Russia; (S.S.); (O.B.); (S.N.)
| | - Margina Yuliya
- Environmental Protection Department, Perm National Research Polytechnic University, 614000 Perm, Russia;
| | - Marina Krasnovskikh
- Department of Inorganic Chemistry, Chemical Technology and Technosphere Safety, Perm State National Research University, St. Bukireva, 15, 614990 Perm, Russia;
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant BFU, 236016 Kaliningrad, Russia; (S.S.); (O.B.); (S.N.)
| |
Collapse
|
6
|
Babich O, Dolganyuk V, Andreeva A, Katserov D, Matskova L, Ulrikh E, Ivanova S, Michaud P, Sukhikh S. Isolation of Valuable Biological Substances from Microalgae Culture. Foods 2022; 11:foods11111654. [PMID: 35681404 PMCID: PMC9180597 DOI: 10.3390/foods11111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Methods for purifying, detecting, and characterizing protein concentrate, carbohydrates, lipids, and neutral fats from the microalgae were developed as a result of research. Microalgae were collected from natural sources (water, sand, soil of the Kaliningrad region, Russia). Microalgae were identified based on morphology and polymerase chain reaction as Chlorella vulgaris Beijer, Arthrospira platensis Gomont, Arthrospira platensis (Nordst.) Geitl., and Dunaliella salina Teod. The protein content in all microalgae samples was determined using a spectrophotometer. The extracts were dried by spray freeze drying. Pressure acid hydrolysis with 1% sulfuric acid was determined to be the most effective method for extracting carbohydrates from microalgae biomass samples. The highest yield of carbohydrates (more than 56%) was obtained from A. platensis samples. The addition of carbohydrates to the cultivation medium increased the accumulation of fatty acids in microalgae, especially in Chlorella. When carbohydrates were introduced to nutrient media, neutral lipids increased by 10.9%, triacylglycerides by 10.9%, fatty acids by 13.9%, polar lipids by 3.1%, unsaponifiable substances by 13.1%, chlorophyllides by 12.1%, other impurities by 8.9% on average for all microalgae. It was demonstrated that on average the content of myristic acid increased by 10.8%, palmitic acid by 10.4%, oleic acid by 10.0%, stearic acid by 10.1%, and linoleic acid by 5.7% in all microalgae samples with the addition of carbohydrates to nutrient media. It was established that microalgae samples contained valuable components (proteins, carbohydrates, lipids, fatty acids, minerals). Thereby the study of the composition of lipids and fatty acids in microalgae, as well as the influence of carbohydrates in the nutrient medium on lipid accumulation, is a promising direction for scientific research in the fields of physiology, biochemistry, biophysics, genetics, space biology and feed additive production.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Anna Andreeva
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Dmitriy Katserov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| | - Elena Ulrikh
- Institute of Agroengineering and Food System, Kaliningrad State Technical University, Soviet Avenue 1, Kaliningrad 236022, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-47-340-7425 (P.M.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-47-340-7425 (P.M.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (V.D.); (A.A.); (D.K.); (L.M.); (S.S.)
| |
Collapse
|