1
|
Jung J, Kim JS, Jeong UY, Bae UJ, Kim M, Park SY, Hwang IG, Heo JW, Shim CK, Ham JS, Lee SH. The Immune-Stimulating and Anti-Diabetic Effects of Allium hookeri Leaves Grown in a Plant Factory with Artificial Lights in Immunosuppressed Obese C57BL/6 Mice. Pharmaceuticals (Basel) 2024; 17:91. [PMID: 38256924 PMCID: PMC10818880 DOI: 10.3390/ph17010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated the immune-stimulating and anti-diabetic effects of Allium hookeri leaves grown in a plant factory with artificial lights. The immunomodulatory effects of A. hookeri leaves' ethanol extracts were evaluated with immune-related hematological factors in blood, the proliferation of splenocytes, NK cell activity, IgG and cytokine levels, and their mechanisms in immunosuppressed obese mice. Anti-diabetic effects were determined by the inhibitory activity against α-amylase and α-glucosidase in vitro and fasting blood glucose levels and biochemical factors in the serum of immunosuppressed obese mice. A. hookeri leaf extracts increased WBC and LYM counts, the proliferation of splenocytes, and serum IgG and IL-1β concentrations compared to those of the NC group, which was used as a negative control. A. hookeri leaf extracts also improved serum HDL levels while they decreased the activities of digestive enzymes, fasting blood glucose, and biochemical factors (ALT, AST, T-Chol, TG, LDL, and GLU). The expressions of IL-1β, JNK, c-Jun, p65, and iNOS in the thymus of immunosuppressed mice were activated by the treatment of A. hookeri leaf extracts. The results suggest that A. hookeri leaves grown in a plant factory with artificial lights also have immune-stimulatory and anti-diabetic effects and can be used as novel functional supplements to control related diseases and to improve public health.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ji-Su Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Un-Yul Jeong
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ui-Jin Bae
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Mina Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Shin-Young Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - In-Guk Hwang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Jeong-Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Chang-Ki Shim
- Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Jun-Sang Ham
- Department of Animal Biotechnology and Environment, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Sung-Hyen Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| |
Collapse
|
2
|
Immunostimulatory Activity of Cordyceps militaris Fermented with Pediococcus pentosaceus SC11 Isolated from a Salted Small Octopus in Cyclophosphamide-Induced Immunocompromised Mice and Its Inhibitory Activity against SARS-CoV 3CL Protease. Microorganisms 2022; 10:microorganisms10122321. [PMID: 36557573 PMCID: PMC9781638 DOI: 10.3390/microorganisms10122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, β-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.
Collapse
|