1
|
Cao M, Ji W, Chao C, Li J, Dai F, Fan X. Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices. Polymers (Basel) 2023; 15:3911. [PMID: 37835960 PMCID: PMC10575197 DOI: 10.3390/polym15193911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
The stability and durability of perovskite solar cells (PSCs) are two main challenges retarding their industrial commercialization. The encapsulation of PSCs is a critical process that improves the stability of PSC devices for practical applications, and intrinsic stability improvement relies on materials optimization. Among all encapsulation materials, UV-curable resins are promising materials for PSC encapsulation due to their short curing time, low shrinkage, and good adhesion to various substrates. In this review, the requirements for PSC encapsulation materials and the advantages of UV-curable resins are firstly critically assessed based on a discussion of the PSC degradation mechanism. Recent advances in improving the encapsulation performance are reviewed from the perspectives of molecular modification, encapsulation materials, and corresponding architecture design while highlighting excellent representative works. Finally, the concluding remarks summarize promising research directions and remaining challenges for the use of UV-curable resins in encapsulation. Potential solutions to current challenges are proposed to inspire future work devoted to transitioning PSCs from the lab to practical application.
Collapse
Affiliation(s)
- Mengyu Cao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (M.C.); (W.J.); (J.L.)
| | - Wenxi Ji
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (M.C.); (W.J.); (J.L.)
| | - Cong Chao
- Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China;
| | - Ji Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (M.C.); (W.J.); (J.L.)
| | - Fei Dai
- Laboratory of Distributed Energy System and Renewable Energy, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Fan
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK
| |
Collapse
|
2
|
Guo Y, Huang L, Wang C, Liu S, Huang J, Liu X, Zhang J, Hu Z, Zhu Y. Advances on the Application of Wide Band-Gap Insulating Materials in Perovskite Solar Cells. SMALL METHODS 2023; 7:e2300377. [PMID: 37254269 DOI: 10.1002/smtd.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.
Collapse
Affiliation(s)
- Yi Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chaofeng Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shuang Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yuejin Zhu
- School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| |
Collapse
|