1
|
Alecu A, Albu C, Badea GI, Alionte A, Enache AA, Radu GL, Litescu SC. Infrared Laser-Assisted Extraction of Bioactive Compounds from Rosa canina L. Int J Mol Sci 2025; 26:992. [PMID: 39940761 PMCID: PMC11817665 DOI: 10.3390/ijms26030992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The extraction of bio-compounds from medicinal plants provides opportunities for using the plant extract for health benefits. Rosa canina L. is considered a "natural superfood", and the valorization of its active compounds requires an extraction technique that ensures a suitable extraction yield while preserving the compounds' activity. In our study, infrared laser irradiation (IRLIR) technology was used for the first time in the bioactive compound's extraction from Rosa canina L. Different solvents (water-ethanol, hexane-ethanol) and different extraction times were tested to obtain a high extraction yield. Chromatographic and spectrophotometry methods were used to monitor the profile of bioactive compounds and the antioxidant activity of the extracts. The results obtained for IRLIR were compared with those obtained by accelerated solvent extraction (ASE), an advanced extraction method. The IRLIR technology proved to be a more reliable analytical tool for the extraction of (+)-catechin, gallic acid, and lutein. In addition, a richer extract formula was obtained by IRLIR extraction with respect to ASE, with the IRLIR process ensuring a short extraction time, low volume of the extraction solvent, low energy consumption, and a less expensive device.
Collapse
Affiliation(s)
- Andreia Alecu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Camelia Albu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Georgiana-Ileana Badea
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Aurelia Alionte
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | | | - Gabriel-Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| | - Simona-Carmen Litescu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (A.A.); (C.A.); (G.-I.B.); (A.A.); (G.-L.R.)
| |
Collapse
|
2
|
Paun G, Neagu E, Albu C, Alecu A, Seciu-Grama AM, Radu GL. Antioxidant and Antidiabetic Activity of Cornus mas L. and Crataegus monogyna Fruit Extracts. Molecules 2024; 29:3595. [PMID: 39125000 PMCID: PMC11314463 DOI: 10.3390/molecules29153595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The present study evaluated three green extraction methods, accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), and laser irradiation extraction (LE), for the polyphenolic compounds and vitamin C extraction of Cornus mas L. and Crataegus monogyna fruit extracts. The polyphenols and vitamin C of extracts were quantified using HPLC-DAD, and the total phenolic content, flavonoid content, antioxidant activity (DPPH and reducing power), and antidiabetic activity were also studied. The antidiabetic activity was examined by the inhibition of α-amylase and α-glucosidase, and in vitro on a beta TC cell line (β-TC-6). The results showed significant differentiation in the extraction yield between the methods used, with the ASE and LE presenting the highest values. The C. mas fruit extract obtained by ASE exhibited the best antioxidant activity, reaching an IC50 value of 31.82 ± 0.10 µg/mL in the DPPH assay and 33.95 ± 0.20 µg/mL in the reducing power assay. The C. mas fruit extracts obtained by ASE and LE also have the highest inhibitory activity on enzymes associated with metabolic disorders: α-amylase (IC50 = 0.44 ± 0.02 µg/mL for the extract obtained by ASE, and 0.11 ± 0.01 µg/mL for the extract obtained by LE at combined wavelengths of 1270 + 1550 nm) and α-glucosidase (IC50 of 77.1 ± 3.1 µg/mL for the extract obtained by ASE, and 98.2 ± 4.7 µg/mL for the extract obtained by LE at combined wavelengths of 1270 + 1550 nm). The evaluation of in vitro antidiabetic activity demonstrated that the treatment with C. mas and C. monogyna fruit extracts obtained using ASE stimulated the insulin secretion of β-TC-6 cells, both under normal conditions and hyperglycemic conditions, as well. All results suggest that C. mas and C. monogyna fruit extracts are good sources of bioactive molecules with antioxidant and antidiabetic activity.
Collapse
Affiliation(s)
- Gabriela Paun
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (E.N.); (C.A.); (A.A.); (A.-M.S.-G.)
| | | | | | | | | | - Gabriel Lucian Radu
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (E.N.); (C.A.); (A.A.); (A.-M.S.-G.)
| |
Collapse
|
3
|
Paun G, Neagu E, Alecu A, Albu C, Seciu-Grama AM, Radu GL. Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts. Molecules 2024; 29:326. [PMID: 38257240 PMCID: PMC10820096 DOI: 10.3390/molecules29020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The present study evaluated the antioxidant and antidiabetic properties of Medicago sativa and Solidago virgaurea extracts enriched in polyphenolic compounds. The extracts were obtained by accelerated solvent extraction (ASE) and laser irradiation. Then, microfiltration was used for purification, followed by nanofiltration used to concentrate the two extracts. The obtained extracts were analyzed to determine their antioxidant activity using DPPH radical scavenging and reducing power methods. The antidiabetic properties have been investigated in vitro on a murine insulinoma cell line (β-TC-6) by the inhibition of α-amylase and α-glucosidase. M. sativa obtained by laser irradiation and concentrated by nanofiltration showed the highest DPPH• scavenging (EC50 = 105.2 ± 1.1 µg/mL) and reducing power activities (EC50 = 40.98 ± 0.2 µg/mL). M. sativa extracts had higher inhibition on α-amylase (IC50 = 23.9 ± 1.2 µg/mL for concentrated extract obtained after ASE, and 26.8 ± 1.1), while S. virgaurea had the highest α-glucosidase inhibition (9.3 ± 0.9 µg/mL for concentrated extract obtained after ASE, and 8.6 ± 0.7 µg/mL for concentrated extract obtained after laser extraction). The obtained results after evaluating in vitro the antidiabetic activity showed that the treatment with M. sativa and S. virgaurea polyphenolic-rich extracts stimulated the insulin secretion of β-TC-6 cells, both under normal conditions and under hyperglycemic conditions as well. This paper argues that M. sativa and S. virgaurea polyphenolic-rich extracts could be excellent natural sources with promising antidiabetic potential.
Collapse
Affiliation(s)
- Gabriela Paun
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (A.A.); (C.A.); (A.-M.S.-G.); (G.L.R.)
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (A.A.); (C.A.); (A.-M.S.-G.); (G.L.R.)
| | | | | | | | | |
Collapse
|
4
|
Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci 2023; 30:103795. [PMID: 37692328 PMCID: PMC10492205 DOI: 10.1016/j.sjbs.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A + B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100 g/mL. With an IC50 of 0.69 mg/mL, the laser-treated S. marianum (6 min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6 min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6 min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.
Collapse
Affiliation(s)
- Munirah F. Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Zaharie MGO, Radu N, Pirvu L, Bostan M, Voicescu M, Begea M, Constantin M, Voaides C, Babeanu N, Roman V. Studies Regarding the Pharmaceutical Potential of Derivative Products from Plantain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1827. [PMID: 35890460 PMCID: PMC9321672 DOI: 10.3390/plants11141827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, three types of extracts isolated from leaves of Plantain (Plantago lanceolata) were tested for their chemical content and biological activities. The three bioproducts are combinations of polysaccharides and polyphenols (flavonoids and iridoidic compounds), and they were tested for antioxidant, antifungal, antitumor, and prebiotic activity (particularly for polysaccharides fraction). Briefly, the iridoid-enriched fraction has revealed a pro-oxidant activity, while the flavonoid-enriched fraction had a high antioxidant potency; the polysaccharide fraction also indicated a pro-oxidant activity, explained by the co-presence of iridoid glycosides. All three bioproducts demonstrated moderate antifungal effects against Aspergillus sp., Penicillium sp., and dermatophytes, too. Studies in vitro proved inhibitory activity of the three fractions on the leukemic tumor cell line THP-1, the main mechanism being apoptosis stimulation, while the polysaccharide fraction indicated a clear prebiotic activity, in the concentration range between 1 and 1000 µg/mL, evaluated as higher than that of the reference products used, inulin and dextrose, respectively.
Collapse
Affiliation(s)
- Marilena-Gabriela Olteanu Zaharie
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Lucia Pirvu
- Biotechnology Department, National Institute of Chemical Pharmaceutical R & D, 112 Vitan Road, 031299 Bucharest, Romania;
| | - Marinela Bostan
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry Ilie Murgulescu, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060026 Bucharest, Romania
| | - Mariana Constantin
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
- Faculty of Pharmacy, University Titu Maiorescu, 178 Calea Vacaresti, 040051 Bucharest, Romania
| | - Catalina Voaides
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Narcisa Babeanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Viviana Roman
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
| |
Collapse
|