1
|
Khiewwijit R, Chainetr S, Thiangchanta S, Ngoenkhumkhong K. Development of sustainable poultry waste management using integrated microalgae cultivation: Towards performance, resource recovery and environmental impact. Heliyon 2024; 10:e40885. [PMID: 39717604 PMCID: PMC11664273 DOI: 10.1016/j.heliyon.2024.e40885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
This study aimed at developing a sustainable waste management from poultry farm by integrating microalgae cultivation with the anaerobic digestion effluent of chicken wastes (ADECW). The analysis was focused on system performance, resource recovery and environmental impact of microalgal biomass-derived added value products. Laboratory-scale of three different systems, i.e. suspended microalgae, biofilm microalgae and the control as no microalgae seed added, was conducted under outdoor climatic conditions in Thailand. The results clearly showed that microalgae system was successfully developed with high treatment performance and potential renewable energy production for the ADECW. Compared to the control, it was demonstrated that most removals of nutrient and organic pollutants were achieved through microalgal assimilation. Biofilm microalgal system was capable for removing NH4 +-N, PO4 3--P and dissolved COD of 97 %, 93 % and 75 %, respectively at the cultivation time of 14 days, while for suspended microalgal system these were 92 %, 87 % and 68 %, respectively. Biofilm microalgal system also showed advantages of higher biomass production and simple harvesting of biomass, due to it tightly attached on supporting material by the matrix of extracellular polymeric substances (EPS). Moreover, the analysis of potential electricity generation and environmental impact highlighted the promising sustainability of microalgae-based poultry wastes treatment as microalgae provided significant potentials for electricity generation and CO2 reduction. The analysis showed that with nationwide egg-laying hen farms in Thailand, the total electricity generation can be as high as 72 GWh/year with the total CO2 reduction capacity of 99 kton CO2/year, while CO2 emission from electricity generated by microalgal biomass is at least 29 % lower than conventional fuels. The study offers a promising waste management alternative with great potential to achieve efficient treatment and valuable resource recovery for poultry farms in the future.
Collapse
Affiliation(s)
- Rungnapha Khiewwijit
- Department of Environmental Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand
| | - Siraprapa Chainetr
- Department of Environmental Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand
| | - Surasit Thiangchanta
- Department of Mechanical Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand
| | - Khanchit Ngoenkhumkhong
- Department of Environmental Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand
| |
Collapse
|
2
|
Kabir Ahmad SF, Kanadasan G, Lee KT, Vadivelu VM. Insight into recent advances in microalgae biogranulation in wastewater treatment. Crit Rev Biotechnol 2024; 44:1594-1609. [PMID: 38485522 DOI: 10.1080/07388551.2024.2317785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 11/20/2024]
Abstract
Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
Collapse
Affiliation(s)
| | - Gobi Kanadasan
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Vel Murugan Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Elsayad RM, Sharshir SW, Khalil A, Basha AM. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121724. [PMID: 38971071 DOI: 10.1016/j.jenvman.2024.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.
Collapse
Affiliation(s)
- Rahma M Elsayad
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Higher Institute of Engineering and Technology, Kafrelsheikh, KFS-HIET, Kafrelsheikh, 33516, Egypt
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ahmed Khalil
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ali M Basha
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
4
|
Guadalupe JJ, Pazmiño‐Vela M, Pozo G, Vernaza W, Ochoa‐Herrera V, Torres MDL, Torres AF. Metagenomic analysis of microbial consortia native to the Amazon, Highlands, and Galapagos regions of Ecuador with potential for wastewater remediation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13272. [PMID: 38692845 PMCID: PMC11062868 DOI: 10.1111/1758-2229.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW). Overall, all three consortia demonstrated higher nutrient removal efficiencies under LC than CDC, with the Amazon and Galapagos consortia outperforming the Highlands consortium in nutrient removal capabilities. Despite differences in α- and β-diversity, microbial species diversity within and between consortia did not directly correlate with their nutrient removal capabilities. However, all three consortia were enriched with core taxonomic groups associated with wastewater remediation activities. Our analyses further revealed higher abundances for nutrient removing microorganisms in the Amazon and Galapagos consortia compared with the Highland consortium. Finally, this study also uncovered the contribution of novel microbial groups that enhance wastewater bioremediation processes. These groups have not previously been reported as part of the core microbial groups commonly found in wastewater communities, thereby highlighting the potential of investigating microbial consortia isolated from ecosystems of megadiverse countries like Ecuador.
Collapse
Affiliation(s)
- Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida PampiteQuitoEcuador
| | - Miguel Pazmiño‐Vela
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida PampiteQuitoEcuador
| | - Gabriela Pozo
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida PampiteQuitoEcuador
| | - Wendy Vernaza
- Colegio de Ciencias e IngenieríaUniversidad San Francisco de Quito USFQ, Diego de Robles y Vía InteroceánicaQuitoEcuador
| | - Valeria Ochoa‐Herrera
- Colegio de Ciencias e IngenieríaUniversidad San Francisco de Quito USFQ, Diego de Robles y Vía InteroceánicaQuitoEcuador
- Department of Environmental Sciences and Engineering, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida PampiteQuitoEcuador
| | - Andres F. Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida PampiteQuitoEcuador
| |
Collapse
|
5
|
Satiro J, Gomes A, Florencio L, Simões R, Albuquerque A. Effect of microalgae and bacteria inoculation on the startup of bioreactors for paper pulp wastewater and biofuel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121305. [PMID: 38830287 DOI: 10.1016/j.jenvman.2024.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The use of microalgae and bacteria as a strategy for the startup of bioreactors for the treatment of industrial wastewater can be a sustainable and economically viable alternative. This technology model provides satisfactory results in the nitrification and denitrification process for nitrogen removal, organic matter removal, biomass growth, sedimentation, and byproducts recovery for added-value product production. The objective of this work was to evaluate the performance of microalgae and bacteria in their symbiotic process when used in the treatment of paper pulp industry wastewater. The experiment, lasting fourteen days, utilized four bioreactors with varying concentrations in mgVSS/L of microalgae to bacteria ratio (R1-100:100, R2-100:300, R3-100:500, R4-300:100) in the startup process. Regarding the sludge volumetric index (SVI), the results show that the R1 and R2 reactors developed SVI30/SVI10 biomass in the range of 85.57 ± 7.33% and 84.72 ± 8.19%, respectively. The lipid content in the biomass of reactors R1, R2, R3 e R4 was 13%, 7%, 19%, and 22%, respectively. This high oil content at the end of the batch, may be related to the nutritional stress that the species underwent during this feeding regime. In terms of chlorophyll, the bioreactor with an initial inoculation of 100:100 showed better symbiotic growth of microalgae and bacteria, allowing exponential growth of microalgae. The total chlorophyll value for this bioreactor was 801.46 ± 196.96 μg/L. Biological removal of nitrogen from wastewater from the paper pulp industry is a challenge due to the characteristics of the effluent, but the four reactors operated in a single batch obtained good nitrogen removal. Ammonia nitrogen removal performances were 91.55 ± 9.99%, 72.13 ± 19.18%, 64.04 ± 21.34%, and 86.15 ± 30.10% in R1, R2, R3, and R4, respectively.
Collapse
Affiliation(s)
- Josivaldo Satiro
- University of Beira Interior, Department of Civil Engineering and Architecture, FibEnTech, Geobiotec, 6201-001, Covilhã, Portugal; Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Academica Helio Ramos, s/n. Cidade Universitária, CEP, 50740-530, Recife, PE, Brazil.
| | - Arlindo Gomes
- University of Beira Interior, Department of Chemistry, FibEnTech, 6201-001, Covilhã, Portugal.
| | - Lourdinha Florencio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Academica Helio Ramos, s/n. Cidade Universitária, CEP, 50740-530, Recife, PE, Brazil.
| | - Rogério Simões
- University of Beira Interior, Department of Chemistry, FibEnTech, 6201-001, Covilhã, Portugal.
| | - Antonio Albuquerque
- University of Beira Interior, Department of Civil Engineering and Architecture, FibEnTech, Geobiotec, 6201-001, Covilhã, Portugal.
| |
Collapse
|
6
|
Odibo A, Janpum C, Pombubpa N, Monshupanee T, Incharoensakdi A, Ur Rehman Z, In-Na P. Microalgal-bacterial immobilized co-culture as living biofilters for nutrient recovery from synthetic wastewater and their potential as biofertilizers. BIORESOURCE TECHNOLOGY 2024; 398:130509. [PMID: 38452949 DOI: 10.1016/j.biortech.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.
Collapse
Affiliation(s)
- Augustine Odibo
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalampol Janpum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zia Ur Rehman
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Sharma M, Agarwal S, Agarwal Malik R, Kumar G, Pal DB, Mandal M, Sarkar A, Bantun F, Haque S, Singh P, Srivastava N, Gupta VK. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered 2023; 14:2184518. [PMID: 37498651 PMCID: PMC10376923 DOI: 10.1080/21655979.2023.2184518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 07/28/2023] Open
Abstract
In the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater. Presently, various waste treatment technologies are adopted across the globe, such as physical, chemical, and biological treatment processes. There is a need to replace these technologies with sustainable and green technology that encourages the use of microorganisms since they have proven to be more effective in water treatment processes. The present review article is focused on demonstrating how effectively various microbes can be used in wastewater treatment to achieve environmental sustainability and economic feasibility. The microbial consortium used for water treatment offers many advantages over pure culture. There is an urgent need to develop hybrid treatment technology for the effective remediation of various organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Sangita Agarwal
- Department of Applied Science, RCC Institute of Information Technology Kolkata, West Bengal, India
| | - Richa Agarwal Malik
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
8
|
Kumar V, Verma P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. ENVIRONMENTAL RESEARCH 2023; 236:116728. [PMID: 37495063 DOI: 10.1016/j.envres.2023.116728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Agro-based pulp and paper mills (PPMs) inevitably produce numerous refractory pollutants in their wastewater, including chlorolignin, chlorophenols, chlorocatechols, chloroguaiacol, cyanide, furan, dioxins, and other organic compounds, as well as various heavy metals, such as nickel (Ni), zinc (Zn), chromium (Cr), iron (Fe), lead (Pb), arsenic (As), etc. These pollutants pose significant threats to aquatic and terrestrial life due to their cytogenotoxicity, mutagenicity, impact on sexual organs, hormonal interference, endocrine disruption, and allergenic response. Consequently, it is crucial to reclaim pulp paper mill wastewater (PPMW) with high loads of refractory pollutants through effective and environmentally sustainable practices to minimize the presence of these chemicals and ensure environmental safety. However, there is currently no comprehensive published review providing up-to-date knowledge on the fate of refractory pollutants from PPMW in soil and aquatic environments, along with valuable insights into the associated health hazards and remediation methods. This critical review aims to shed light on the potential adverse effects of refractory pollutants from PPMW on natural ecosystems and living organisms. It explores existing effective treatment technologies for remediating these pollutants from wastewater, highlighting the advantages and disadvantages of each approach, all in pursuit of environmental safety. Special emphasis is placed on emerging technologies used to decontaminate wastewater discharged from PPMs, ensuring the preservation of the environment. Additionally, this review addresses the major challenges and proposes future research directions for the proper disposal of PPMW. It serves as a comprehensive source of knowledge on the environmental toxicity and risks associated with refractory pollutants in PPMW, making it a valuable reference for policymakers and researchers when selecting appropriate technologies for remediation. The scientific community, concerned with mitigating the widespread risks posed by refractory pollutants from PPMs, is expected to take a keen interest in this review.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
9
|
Vale F, Sousa CA, Sousa H, Simões LC, McBain AJ, Simões M. Bacteria and microalgae associations in periphyton-mechanisms and biotechnological opportunities. FEMS Microbiol Rev 2023; 47:fuad047. [PMID: 37586879 DOI: 10.1093/femsre/fuad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Phototrophic and heterotrophic microorganisms coexist in complex and dynamic structures called periphyton. These structures shape the biogeochemistry and biodiversity of aquatic ecosystems. In particular, microalgae-bacteria interactions are a prominent focus of study by microbial ecologists and can provide biotechnological opportunities for numerous applications (i.e. microalgal bloom control, aquaculture, biorefinery, and wastewater bioremediation). In this review, we analyze the species dynamics (i.e. periphyton formation and factors determining the prevalence of one species over another), coexisting communities, exchange of resources, and communication mechanisms of periphytic microalgae and bacteria. We extend periphyton mathematical modelling as a tool to comprehend complex interactions. This review is expected to boost the applicability of microalgae-bacteria consortia, by drawing out knowledge from natural periphyton.
Collapse
Affiliation(s)
- Francisca Vale
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Henrique Sousa
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Manuel Simões
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Satpati GG, Dikshit PK, Mal N, Pal R, Sherpa KC, Rajak RC, Rather SU, Raghunathan S, Davoodbasha M. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161828. [PMID: 36707000 DOI: 10.1016/j.scitotenv.2023.161828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The microalgae have a great potential as the fourth generation biofuel feedstock to deal with energy crisis, but the cost of production and biomass harvest are the major hurdles in terms of large scale production and applications. Using filamentous fungi to culture targeted alga for biomass accumulation and eventually harvesting is a sustainable way to mitigate environmental impacts. Microalgal co-culture method could be an alternative to overcome limitations and increase biomass yield and lipid accumulation. It was found to be the high feasibility for the production of biofuels from fungi and microalgae using wastewater. This article aimed to state the synergistic approaches, their culture protocols, harvesting procedure and their potential biotechnological applications. Additionally, algal-fungal consortia could digest cellulosic biomass, potentially reducing operating costs as part of industrial need. As a result of co-cultivation, biofuel production could be economically feasible owing to its excellent ability to treat wastewater and be eco-friendly. The implications of the innovative co-cultivation technology have demonstrated the potential for further development based on the policies that have been supported and implemented.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal, India.
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, Andhra Pradesh, India
| | - Navonil Mal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Ruma Pal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Knawang Chhunji Sherpa
- Microbial Process and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi, Jharkhand, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box, 80204, Jeddah 21589, Saudi Arabia
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India.
| |
Collapse
|
11
|
Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Ganesh Moorthy IM, Ashokkumar B, Pugazhendhi A, Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. CHEMOSPHERE 2023; 313:137310. [PMID: 36460155 DOI: 10.1016/j.chemosphere.2022.137310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Phycoremediation of heavy metals are gaining much attention and becoming an emerging practice for the metal removal in diverse environmental matrices. Still, the physicochemical state of metal polluted sites is often found to be complex and haphazard in nature due to the irregular discharge of wastes, that leads to the lack of conjecture on the application of microalgae for the metal bioremediation. Besides, the foresaid issues might be eventually ended up with futile effect to the polluted site. Therefore, this review is mainly focusing on interpretative assessment on pre-existing microalgal strategies and their merits and demerits for selected metal removal by microalgae through various process such as natural attenuation, nutritional amendment, chemical pretreatment, metal specific modification, immobilization and amalgamation, customization of genetic elements and integrative remediation approaches. Thus, this review provides the ideal knowledge for choosing an efficient metal remediation tactics based on the state of polluted environment. Also, this in-depth description would provide the speculative knowledge of counteractive action required for pass-over the barriers and obstacles during implementation. In addition, the most common metal removal mechanism of microalgae by adsorption was comparatively investigated with different metals through the principal component analysis by grouping various factor such as pH, temperature, initial metal concentration, adsorption capacity, removal efficiency, contact time in different microalgae. Conclusively, the suitable strategies for different heavy metals removal and addressing the complications along with their solution is comprehensively deliberated for metal removal mechanism in microalgae.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nair Anjitha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kottilinkal Manniath Athira
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation Group, New Delhi, 110067, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Sankar Karthikumar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar, 626001, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
12
|
Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. WATER 2022. [DOI: 10.3390/w14132042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding how to address today’s global challenges is critical to improving corporate performance in terms of economic and environmental sustainability. In wastewater treatment systems, such an approach implies integrating efficient treatment technologies with aspects of the circular economy. In this business field, energy costs represent a large share of operating costs. This work discusses technological and management aspects leading to greater energy savings in Portuguese wastewater treatment companies. A mixed methodology, involving qualitative and quantitative aspects, for collecting and analysing data from wastewater treatment plants was used. The qualitative aspects consisted of a narrative analysis of the information available on reports and websites for 11 wastewater management companies in Portugal (e.g., technologies, treated wastewater volumes and operating costs) followed by a review of several international studies. The quantitative approach involved calculating the specific energy consumption (kWh/m3), energy operating costs (EUR/m3) and energy operating costs per population equivalent (EUR/inhabitants) using data from the literature and from Portuguese companies collected from the SABI database. The results suggested that the most environmentally and economically sustainable solution is algae-based technology which might allow a reduction in energy operating costs between 0.05–0.41 EUR/m3 and 15.4–180.8 EUR/inhabitants compared to activated sludge and other conventional methods. This technology, in addition to being financially advantageous, provides the ability to eliminate the carbon footprint and the valorisation of algae biomass, suggesting that this biotechnology is starting to position itself as a mandatory future solution in the wastewater treatment sector.
Collapse
|