1
|
Šelo G, Planinić M, Tišma M, Martinović J, Perković G, Bucić-Kojić A. Bioconversion of Grape Pomace with Rhizopus oryzae under Solid-State Conditions: Changes in the Chemical Composition and Profile of Phenolic Compounds. Microorganisms 2023; 11:microorganisms11040956. [PMID: 37110379 PMCID: PMC10143194 DOI: 10.3390/microorganisms11040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Grape pomace is a sustainable source of bioactive phenolic compounds used in various industries. The recovery of phenolic compounds could be improved by biological pretreatment of grape pomace, as they are released from the lignocellulose structure by the activity of the enzymes produced. The influence of grape pomace pretreatment with Rhizopus oryzae under solid-state conditions (SSF) on the phenolic profile and chemical composition changes was studied. SSF was performed in laboratory jars and in a tray bioreactor for 15 days. Biological pretreatment of grape pomace resulted in an increase in the content of 11 individual phenolic compounds (from 1.1 to 2.5-fold). During SSF, changes in the chemical composition of the grape pomace were observed, including a decrease in ash, protein, and sugar content, and an increase in fat, cellulose, and lignin content. A positive correlation (r > 0.9) was observed between lignolytic enzymes and the hydrolytic enzyme’s xylanase and stilbene content. Finally, after 15 days of SSF, a weight loss of GP of 17.6% was observed. The results indicate that SSF under experimental conditions is a sustainable bioprocess for the recovery of phenolic compounds and contributes to the zero-waste concept by reducing waste.
Collapse
Affiliation(s)
- Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
2
|
Ábrego-García A, Poggi-Varaldo HM, Ponce-Noyola MT, Calva-Calva G, Galíndez-Mayer CJJ, Medina-Mendoza GG, Rinderknecht-Seijas NF. Bioprocessing of Two Crop Residues for Animal Feeding into a High-Yield Lovastatin Feed Supplement. Animals (Basel) 2022; 12:ani12192697. [PMID: 36230438 PMCID: PMC9559462 DOI: 10.3390/ani12192697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Lovastatin is a fungal secondary metabolite that can mitigate rumen methane production. This work aimed at evaluating the lovastatin production by solid-state fermentation from selected crop residues and A. terreus strains, considering the post-fermented residues as feed supplements for ruminants. Fermented oat straw by A. terreus CDBB H-194 exhibited the highest lovastatin yield (23.8 mg/g DM fed). GC–MS analysis identified only a couple of compounds from the residues fermented by CDBB H-194 (1,3-dipalmitin trimethylsilyl ether in the fermented oat straw) and stearic acid hydrazide in the fermented wheat bran) that could negatively affect ruminal bacteria and fungi. Abstract This work aimed to evaluate the lovastatin (Lv) production by solid-state fermentation (SSF) from selected crop residues, considering the post-fermented residues as feed supplements for ruminants. The SSF was performed with two substrates (wheat bran and oat straw) and two A. terreus strains (CDBB H-194 and CDBB H-1976). The Lv yield, proximate analysis, and organic compounds by GC–MS in the post-fermented residues were assessed. The combination of the CDBB H-194 strain with oat straw at 16 d of incubation time showed the highest Lv yield (23.8 mg/g DM fed) and the corresponding degradation efficiency of hemicellulose + cellulose was low to moderate (24.1%). The other three treatments showed final Lv concentrations in decreasing order of 9.1, 6.8, and 5.67 mg/g DM fed for the oat straw + CDBB H-1976, wheat bran + CDBB H-194, and wheat bran + CDBB H-1976, respectively. An analysis of variance of the 22 factorial experiment of Lv showed a strong significant interaction between the strain and substrate factors. The kinetic of Lv production adequately fitted a zero-order model in the four treatments. GC–MS analysis identified only a couple of compounds from the residues fermented by A. terreus CDBB H-194 (1,3-dipalmitin trimethylsilyl ether in the fermented oat straw and stearic acid hydrazide in the fermented wheat bran) that could negatively affect ruminal bacteria and fungi. Solid-state fermentation of oat straw with CDBB H-194 deserves further investigation due to its high yield of Lv; low dietary proportions of this post-fermented oat straw could be used as an Lv-carrier supplement for rumen methane mitigation.
Collapse
Affiliation(s)
- Amaury Ábrego-García
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
- Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
| | - Héctor M. Poggi-Varaldo
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
- Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
- Correspondence: ; Tel.: +52-55-57473800 (ext. 4324 & 4306)
| | - M. Teresa Ponce-Noyola
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
| | - Graciano Calva-Calva
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
| | - Cutberto José Juvencio Galíndez-Mayer
- Departamento de Ingeniería Bioquímica, ENCB, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Mexico City 07738, Mexico
| | - Gustavo G. Medina-Mendoza
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O. Box 14-740, Mexico City 07000, Mexico
| | - Noemí F. Rinderknecht-Seijas
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City 07738, Mexico
| |
Collapse
|