Sip P, Kozłowska M, Czysz D, Daroszewski P, Lisiński P. Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients.
SENSORS (BASEL, SWITZERLAND) 2023;
23:712. [PMID:
36679511 PMCID:
PMC9867444 DOI:
10.3390/s23020712]
[Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Stroke is one of the leading causes of disability, including loss of hand manipulative skills. It constitutes a major limitation in independence and the ability to perform everyday tasks. Among the numerous accessible physiotherapeutic methods, it is becoming more common to apply Virtual Reality "VR”. The aim of this study was to establish whether immersive VR was worth considering as a form of physical therapy and the advisability of applying it in restoring post-stroke hand function impairment. A proprietary application Virtual Mirror Hand 1.0 was used in the research and its effectiveness in therapy was compared to classical mirror therapy. A total of 20 survivors after ischaemic stroke with comparable functional status were divided into a study group (n = 10) and control group (n = 10). Diagnostic tools included 36-Item Short Form Survey “SF-36” and the Fugl-Meyer Assessment Upper Extremity “FMA-UE”. Collected metrics showed a normal distribution and the differences in mean values were tested by the student’s t-test. In both, the study and control groups’ changes were recorded. A statistically significant outcome for FMA-UE and SF-36 measured by the student’s t-test for dependent or independent samples (p > 0.05) were obtained in both groups. Importantly, proven by conducted studies, an advantage of VR proprietary application was subjective sensations amelioration in pain and sensory impressions. Applying Virtual Mirror Hand 1.0 treatment to patients after a stroke appears to be a good solution and definitely provides the opportunity to consider VR applications as an integral part of the neurorehabilitation process. These results give a basis to plan further larger-scale observation attempts. Moreover, the development of the Virtual Mirror Hand 1.0 as an innovative application in physiotherapy may become equivalent to classical mirror therapy in improving the quality and effectiveness of the treatment used for post-stroke patients.
Collapse