1
|
Hicguet M, Mongin O, Leroux YR, Roisnel T, Berrée F, Trolez Y. Synthesis and Optoelectronic Properties of Threaded BODIPYs. ChemistryOpen 2024:e202400196. [PMID: 39041684 DOI: 10.1002/open.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
We report on the synthesis of two new threaded BODIPYs 5 and 6 in good yields using boron as a gathering atom and a macrocycle with a 2,2'-biphenol unit. In addition to usual techniques, they were characterized by X-ray crystallography. Their electrochemical and optical properties were investigated. In particular, both compounds are highly emissive with photoluminescence quantum yields of 54 and 81 % respectively. In addition, they both show a high photostability.
Collapse
Affiliation(s)
- Matthieu Hicguet
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Olivier Mongin
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Yann R Leroux
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Thierry Roisnel
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Fabienne Berrée
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| | - Yann Trolez
- ISCR - UMR6226, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, Univ Rennes, F-35000, Rennes, France
| |
Collapse
|
2
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
3
|
Röttger SH, Patalag LJ, Hasenmaile F, Milbrandt L, Butschke B, Jones PG, Werz DB. Linear Amine-Linked Oligo-BODIPYs: Convergent Access via Buchwald-Hartwig Coupling. Org Lett 2024; 26:3020-3025. [PMID: 38564714 DOI: 10.1021/acs.orglett.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A convergent route toward nitrogen-bridged BODIPY oligomers has been developed. The synthetic key step is a Buchwald-Hartwig cross-coupling reaction of an α-amino-BODIPY and the respective halide. Not only does the selective synthesis provide control of the oligomer size, but the facile preparative procedure also enables easy access to these types of dyes. Furthermore, functionalized examples were accessible via brominated derivatives.
Collapse
Affiliation(s)
- Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas J Patalag
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Felix Hasenmaile
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas Milbrandt
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Burkhard Butschke
- Albert-Ludwigs-Universität Freiburg, Institute of Inorganic and Analytical Chemistry, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
| | - Peter G Jones
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Tikhonov SA, Sidorin AE, Ksenofontov AA, Kosyanov DY, Samoilov IS, Skitnevskaya AD, Trofimov AB, Antina EV, Berezin MB, Vovna VI. XPS and quantum chemical analysis of 4Me-BODIPY derivatives. Phys Chem Chem Phys 2023; 25:5211-5225. [PMID: 36723097 DOI: 10.1039/d2cp04541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The results of a X-ray photoelectron spectroscopy (XPS) and steady-state absorption spectroscopy study of the electronic structure, and cationic and excited states of a series of 1,3,5,7-tetramethyl-substituted BODIPYs (4Me,2R-BODIPYs) are presented. The experimental data were interpreted using high-level ab initio quantum chemical computations, including the algebraic diagrammatic construction method for the polarization propagator of the second order (ADC(2)), the outer-valence Green's function (OVGF) method, the density functional (DFT) approach, and the time-dependent DFT (TD-DFT) approach. Substitution effects on the XPS and absorption spectra were determined for 2,6-positions of 4Me,2R-BODIPY pyrrole nuclei (R = H, Br, Bu, benzyl). A very satisfactory performance of the DFT Koopmans theorem analogue was demonstrated with respect to the energy intervals between the electronic levels of 4Me,2R-BODIPY above 13 eV (BHHLYP functional) and the values of the HOMO-LUMO energy gap (ωB97X functional).
Collapse
Affiliation(s)
- Sergey A Tikhonov
- Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences, Piip blvd. 9, 683023 Petropavlovsk-Kamchatsky, Russian Federation.
| | - Andrey E Sidorin
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russian Federation
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - Denis Yu Kosyanov
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russian Federation.,Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 5 Radio Street, 690041 Vladivostok, Russian Federation
| | - Ilya S Samoilov
- Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences, Piip blvd. 9, 683023 Petropavlovsk-Kamchatsky, Russian Federation. .,Department of Photonics, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034 St. Petersburg, Russian Federation
| | - Anna D Skitnevskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russian Federation
| | - Alexander B Trofimov
- Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russian Federation.,Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - Vitaliy I Vovna
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russian Federation
| |
Collapse
|