1
|
Sharma S, Pandey MK. Radiometals in Imaging and Therapy: Highlighting Two Decades of Research. Pharmaceuticals (Basel) 2023; 16:1460. [PMID: 37895931 PMCID: PMC10610335 DOI: 10.3390/ph16101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The present article highlights the important progress made in the last two decades in the fields of molecular imaging and radionuclide therapy. Advancements in radiometal-based positron emission tomography, single photon emission computerized tomography, and radionuclide therapy are illustrated in terms of their production routes and ease of radiolabeling. Applications in clinical diagnostic and radionuclide therapy are considered, including human studies under clinical trials; their current stages of clinical translations and findings are summarized. Because the metalloid astatine is used for imaging and radionuclide therapy, it is included in this review. In regard to radionuclide therapy, both beta-minus (β-) and alpha (α)-emitting radionuclides are discussed by highlighting their production routes, targeted radiopharmaceuticals, and current clinical translation stage.
Collapse
Affiliation(s)
| | - Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
2
|
Outzen L, Münzmay M, Frangioni JV, Maison W. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023; 18:e202300112. [PMID: 37057615 DOI: 10.1002/cmdc.202300112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The natural siderophore desferrioxamine B (DFOB) has been used for targeted PET imaging with 89 Zr before. However, Zr-DFOB has a limited stability and a number of derivatives have been developed with improved chelation properties for zirconium. We describe the synthesis of pseudopeptidic analogues of DFOB with azido side chains. These are termed AZA-DFO (hexadentate) and AZA-DFO* (octadentate) and are assembled via a modular synthesis from Orn-β-Ala and Lys-β-Ala. Nine different chelators have been conjugated to zwitterionic moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting water-soluble chelators form Zr complexes under mild conditions (room temperature for 90 min). Transchelation assays with 1000-fold excess of EDTA and 300-fold excess of DFOB revealed that a short spacing of hydroxamates in (Orn-β-Ala)3-4 leads to improved complex stability compared to a longer spacing in (Lys-β-Ala)3-4 . We found that the alignment of amide groups in the pseudopeptide backbone and the presence of zwitterionic sidechains did not compromise the stability of the Zr-complexes with our chelators. We believe that the octadentate derivative AZA-DFO* is particularly valuable for the preparation of new Zr-chelators for targeted imaging which combine tunable pharmacokinetic properties with high complex stability and fast Zr-complexation kinetics.
Collapse
Affiliation(s)
- Lasse Outzen
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Moritz Münzmay
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | | | - Wolfgang Maison
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
3
|
A new targetry system for production of zirconium-89 radioisotope with Cyclone-30 cyclotron. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In this study, an efficient method for targetry and production of zirconium-89 radioisotope (89Zr) with Cyclone-30 cyclotron was developed. The preparation of a highly pure compressed yttrium oxide target material and design of a target made by copper for better heat transfer was performed. Electrodeposition of target with gold was done to prevent the entry of metallic impurities (copper, zinc and other trace metal elements). Nuclear reaction cross sections for optimization of production with new target and irradiation parameters of the target were evaluated. The prepared 89Zr in the form of [89Zr] Zr-oxalate had high radionuclidic purity (>99.9%) and a low chemical impurity concentration (<0.1 ppm for copper and zinc elements). The yield of 89Zr radioisotope production via the reaction of 89Y(p,n)89Zr was measured to be 77 ± 9.5 MBq/μAh (time of irradiation = 3, the current 20–30 µA). [89Zr] Zr-oxalate specific-activity was in the range 2.319641 × 104–3.479443 × 104 MBq/mmol of Oxalate.
Collapse
|
4
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
O'Hara MJ, Carter JC, Kellogg CM, Link JM. Anion exchange and extraction chromatography tandem column isolation of zirconium-89 ( 89Zr) from cyclotron bombarded targets using an automated fluidic platform. J Chromatogr A 2022; 1678:463347. [PMID: 35908511 DOI: 10.1016/j.chroma.2022.463347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The long-lived positron emitter 89Zr is a highly promising nuclide employed in diagnostic Positron Emission Tomography (PET) imaging. Methods of radiochemical processing to obtain 89Zr for clinical use are traditionally performed with a single hydroxamate resin column. Herein, we present a tandem column purification method for the preparation of high-purity 89Zr from cyclotron bombarded natural Y metal foils. The primary column is a macroporous, strongly basic anion exchange resin on styrene divinylbenzene co-polymer. The secondary microcolumn, with an internal volume of 33 μL, is packed with an extraction chromatography resin (ExCR) loaded with di-(2-ethylhexyl)phosphoric acid (HDEHP). A condition of "inverted selectivity" is presented, wherein the 89Zr elution from the primary column is synonymous with the load condition on the secondary column. The ability to transfer 89Zr from one column to the next allows two sequential purification steps to be performed prior to the final elution of the 89Zr product. This approach assures delivery of high purity 89Zr. The tandem column purification process has been implemented into a prototype automated fluidic system. Optimization of the method is presented, followed by evaluation of the process using seven cyclotron bombarded Y metal foil targets. Once optimized, we found that 93.7 ± 2.3% of the 89Zr present in the foils was recovered in the secondary column elution fraction (0.8 M oxalic acid). Radiochromatograms of the product elution peaks enabled determination of full width at half-maximum (FWHM) and 89Zr collection yields as a function of volume. Because of the small size of the secondary microcolumn, a 89Zr product volume of ∼0.28 mL is reported, which provides a substantially increased nuclide concentration over traditional methods. Finally, we evaluated the transchelation of the resulting 89Zr oxalate product to deferoxamine mesylate (DFOM) salt. We observed effective specific activities (ESA) and bindable metals concentrations ([MB]) that exceed those reported by the traditional single hydroxamate column method.
Collapse
Affiliation(s)
- Matthew J O'Hara
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States.
| | - Jennifer C Carter
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States
| | - Cynthia M Kellogg
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States
| | - Jeanne M Link
- Center for Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, United States
| |
Collapse
|
6
|
Target manufacturing by Spark Plasma Sintering for efficient 89Zr production. Nucl Med Biol 2021; 104-105:38-46. [PMID: 34856450 DOI: 10.1016/j.nucmedbio.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Zirconium-89 (89Zr) is an emerging radionuclide for positron emission tomography (PET), with nuclear properties suitable for imaging slow biological processes in cellular targets. The 89Y(p,n)89Zr nuclear reaction is commonly exploited as the main production route with medical cyclotrons accelerating low-energy (< 20 MeV) and low-current (< 100 μA) proton beams. Usually, natural yttrium solid targets manufactured by different methods, including yttrium electrodeposition, yttrium sputtering, compressed yttrium powders, and foils, were employed. In this study, the Spark Plasma Sintering (SPS) technique has been investigated, for the first time, to manufacture yttrium solid targets for an efficient 89Zr radionuclide yield. The natural yttrium disc was bonded to a niobium backing plate using a commercial SPS apparatus and a prototype machine assembled at the University of Pavia. The resulting targets were irradiated in a TR19 cyclotron with a 12 MeV proton beam at 50 μA. A dedicated dissolution module, obtained from a commercial system, was used to develop an automated process for the purification and recovery of the produced 89Zr radionuclide. The production yield and recovery efficiency were measured and compared to 89Zr produced by irradiating standard yttrium foils. SPS manufactured targets withstand an average heat power density of approximately 650 W∙cm-2 for continuous irradiation up to 5 h without visible damage. A saturation yield of 14.12 ± 0.38 MBq/μAh was measured. The results showed that the obtained 89Zr production yield and quality were comparable to similar data obtained using standard yttrium foil targets. In conclusion, the present work demonstrates that the SPS technique might be a suitable technical manufacturing solution aimed at high-yield 89Zr radioisotope production.
Collapse
|
7
|
Pandey MK, DeGrado TR. Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects. Curr Radiopharm 2021; 14:325-339. [PMID: 32867656 PMCID: PMC9909776 DOI: 10.2174/1874471013999200820165734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The present review describes the methodological aspects and prospects of the production of Positron Emission Tomography (PET) radiometals in a liquid target using low-medium energy medical cyclotrons. The main objective of this review is to delineate and discuss the critical factors involved in the liquid target production of radiometals, including type of salt solution, solution composition, beam energy, beam current, the effect of irradiation duration (length of irradiation) and challenges posed by in-target chemistry in relation with irradiation parameters. We also summarize the optimal parameters for the production of various radiometals in liquid targets. Additionally, we discuss the future prospects of PET radiometals production in the liquid targets for academic research and clinical applications. Significant emphasis has been given to the production of 68Ga using liquid targets due to the growing demand for 68Ga labeled PSMA vectors, [68Ga]- Ga-DOTATATE, [68Ga]Ga-DOTANOC and some upcoming 68Ga labeled radiopharmaceuticals. Other PET radiometals included in the discussion are 86Y, 63Zn and 89Zr.
Collapse
Affiliation(s)
- Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA,Address correspondence to this author at the Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA; E-mail:
| | - Timothy R. DeGrado
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA
| |
Collapse
|
8
|
Klasen B, Lemcke D, Mindt TL, Gasser G, Rösch F. Development and in vitro evaluation of new bifunctional 89Zr-chelators based on the 6-amino-1,4-diazepane scaffold for immuno-PET applications. Nucl Med Biol 2021; 102-103:12-23. [PMID: 34242949 DOI: 10.1016/j.nucmedbio.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Combination of hydroxamate bearing side chains with the 6-amino-1,4-diazepane scaffold provides a promising strategy for fast and stable 89Zr-labeling of antibodies. Following this approach, we hereby present the development, labeling kinetics and in vitro complex stability of three resulting bifunctional chelator derivatives both stand-alone and coupled to a model protein in comparison to different linear deferoxamine (DFO) derivatives. METHODS The novel 89Zr-chelator Hy3ADA5 was prepared via amide-coupling of separately synthesized 6-amino-1,4-diazepane-6-pentanoic acid and hydroxamate-containing side chains. Two further bifunctional derivatives were synthesized by extending the resulting system with either a squaramide- or p-isothiocyanatophenyl moiety for simplified binding to proteins. After coupling to a model antibody and purification, the resulting immunoconjugates as well as the unbound chelator derivatives were 89Zr-labeled at room temperature (RT) and neutral pH. For comparison, different DFO derivatives were analogously coupled, purified and radiolabeled. In vitro complex stability of the resulting radioconjugates was investigated in phosphate buffered saline (PBS) and human serum at 37 °C over a period of 7 days. RESULTS 89Zr-labeling of the novel unbound Hy3ADA5 derivatives indicated rapid complexation kinetics resulting in high radiochemical conversions (RCC) of 84-94% after 90 min. Similar or even faster radiolabeling with slightly increased maximum yields was obtained using the DFO-analogues. Initially, [89Zr]Zr-DFO*-p-Ph-NCS showed a delayed formation, nevertheless reaching almost quantitative complexation. Radiolabeling of the corresponding immunoconjugates Hy3ADA5-SA-mAb and Hy3ADA5-p-Ph-NCS-mAb resulted in 82.0 ± 1.1 and 89.2 ± 0.7% RCC, respectively after 90 min representing high but slightly lower labeling efficiency compared to the DFO- and DFO*-functionalized analogues. All examined radioimmunoconjugates showed very high in vitro complex stability both in human serum and PBS, providing no significant release of the radiometal. In the case of unbound chelators, however, the p-Ph-NCS-functionalized derivatives indicated considerable instability in human serum already after 1 h. CONCLUSION The novel chelator derivatives based on hydroxamate-functionalized 6-amino-1,4-diazepane revealed fast and high yielding 89Zr-labeling kinetics as well as high in vitro complex stability both stand-alone and coupled to an antibody. Therefore, Hy3ADA5 represents a promising tool for radiolabeling of biomolecules such as antibodies at mild conditions for immuno-PET applications.
Collapse
Affiliation(s)
- Benedikt Klasen
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany.
| | - Daniel Lemcke
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Paris, France
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany.
| |
Collapse
|
9
|
Bubenshchikov VB, Larenkov AA, Kodina GE. Preparation of 89Zr Solutions for Radiopharmaceuticals Synthesis. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Massicano AVF, Bartels JL, Jeffers CD, Crenshaw BK, Houson H, Mueller C, Younger JW, Knapp P, McConathy JE, Lapi SE. Production of [ 89 Zr]Oxinate 4 and cell radiolabeling for human use. J Labelled Comp Radiopharm 2021; 64:209-216. [PMID: 33326139 DOI: 10.1002/jlcr.3901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023]
Abstract
[89 Zr]Oxinate4 is a Positron Emission Tomography (PET) tracer for cell radiolabeling that can enable imaging techniques to help better understand cell trafficking in various diseases. Although several groups have synthetized this compound for use in preclinical studies, there is no available data regarding the production of [89 Zr]Oxinate4 for human use. In this report, we describe the detailed production of [89 Zr]Oxinate4 under USP <823> and autologous leukocyte radiolabeling under USP <797>. The final product presented high radiochemical purity and stability at 24 h post synthesis (>99%) and passed in all quality control assays required for clinical use. [89 Zr]Oxinate4 did not compromise the white blood cells viability and did not show considerable cellular efflux up to 3 h post labeling. The translation of this technique into human use can provide insight into several disease mechanisms since [89 Zr]Oxinate4 has the potential to label any cell subset of interest.
Collapse
Affiliation(s)
- Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bartels
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charlotte D Jeffers
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryant K Crenshaw
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hailey Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jarred W Younger
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Knapp
- Nuclear and Precision Health Solutions, Cardinal Health, Dublin, Ohio, USA
| | - Jonathan E McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Diebolder P, Mpoy C, Scott J, Huynh TT, Fields R, Spitzer D, Bandara N, Rogers BE. Preclinical Evaluation of an Engineered Single-Chain Fragment Variable-Fragment Crystallizable Targeting Human CD44. J Nucl Med 2020; 62:137-143. [PMID: 32513906 DOI: 10.2967/jnumed.120.249557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Glycoprotein CD44 and alternative splice variants are overexpressed in many cancers and cancer stem cells. Binding of hyaluronic acid to CD44 activates cell signaling pathways, inducing cell proliferation, cell survival, and invasion. As such, CD44 is regarded as an excellent target for cancer therapy when this interaction can be blocked. In this study, we developed a CD44-specific antibody fragment and evaluated it for imaging CD44-positive cancers using PET. Methods: A human single-chain fragment variable (scFv) was generated by phage display, using the extracellular domain of recombinant human CD44. The specificity and affinity of the scFv-CD44 were evaluated using recombinant and tumor cell-expressed CD44. Epitope mapping of the putative CD44 binding site was performed via overlapping peptide microarray. The scFv-CD44 was reformatted into a bivalent scFv-Fc-CD44, based on human IgG1-fragment crystallizable (Fc). The scFv-Fc-CD44 was radiolabeled with 64Cu and 89Zr. The purified reagents were injected into athymic nude mice bearing CD44-positive human tumors (MDA-MB-231, breast cancer, triple-negative). Biodistribution studies were performed at different times after injection of [64Cu]Cu-NOTA-scFv-Fc-CD44 or [89Zr]Zr-DFO-scFv-Fc-CD44. PET/CT imaging was conducted with [89Zr]Zr-DFO-scFv-Fc-CD44 on days 1 and 7 after injection and compared with a scFv-Fc control antibody construct targeting glycophorin A. Results: Epitope mapping of the scFv binding site revealed a linear epitope within the extracellular domain of human CD44, capable of blocking binding to native hyaluronic acid. Switching from a monovalent scFv to a bivalent scFv-Fc format improved its binding affinity toward native CD44 on human breast cancer cells by nearly 200-fold. In vivo biodistribution data showed the highest tumor uptake and tumor-to-blood ratios for [89Zr]Zr-DFO-scFv-Fc-CD44 between days 5 and 7. PET imaging confirmed excellent tumor specificity for [89Zr]Zr-DFO-scFv-Fc-CD44 when compared with the control scFv-Fc. Conclusion: We developed a CD44-specific scFv-Fc construct that binds with nanomolar affinity to human CD44. When radiolabeled with 64Cu or 89Zr, it demonstrated specific uptake in CD44-expressing MDA-MB-231 tumors. The high tumor uptake (∼56% injected dose/g) warrants clinical investigation of [89Zr]Zr-DFO-scFv-Fc-CD44 as a versatile PET imaging agent for patients with CD44-positive tumors.
Collapse
Affiliation(s)
- Philipp Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jalen Scott
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,Department of Chemistry, Washington University, St. Louis, Missouri; and
| | - Ryan Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Gaja V, Cawthray J, Geyer CR, Fonge H. Production and Semi-Automated Processing of 89Zr Using a Commercially Available TRASIS MiniAiO Module. Molecules 2020; 25:molecules25112626. [PMID: 32516930 PMCID: PMC7321185 DOI: 10.3390/molecules25112626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/23/2022] Open
Abstract
The increased interest in 89Zr-labelled immunoPET imaging probes for use in preclinical and clinical studies has led to a rising demand for the isotope. The highly penetrating 511 and 909 keV photons emitted by 89Zr deliver an undesirably high radiation dose, which makes it difficult to produce large amounts manually. Additionally, there is a growing demand for Good Manufacturing Practices (GMP)-grade radionuclides for clinical applications. In this study, we have adopted the commercially available TRASIS mini AllinOne (miniAiO) automated synthesis unit to achieve efficient and reproducible batches of 89Zr. This automated module is used for the target dissolution and separation of 89Zr from the yttrium target material. The 89Zr is eluted with a very small volume of oxalic acid (1.5 mL) directly over the sterile filter into the final vial. Using this sophisticated automated purification method, we obtained satisfactory amount of 89Zr in high radionuclidic and radiochemical purities in excess of 99.99%. The specific activity of three production batches were calculated and was found to be in the range of 1351–2323 MBq/µmol. ICP-MS analysis of final solutions showed impurity levels always below 1 ppm.
Collapse
Affiliation(s)
- Vijay Gaja
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 0W8, Canada;
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | | | - Clarence R. Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 5E5, Canada;
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK S7N 0W8, Canada;
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.: +1-306-655-3353; Fax: +1-306-655-1637
| |
Collapse
|
13
|
Kandil SAA, Scherer UW. FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The high importance of zirconium-89 (T1/2 = 78.41 h) is related to its applications in medical imaging. It can be produced at low-energy cyclotrons by the reaction 89Y(p,n)89Zr. There exist several publications on its production at low and intermediate energies but there is discrepancy with simulated data. In this study we considered the experimental parameters for four different types of yttrium foil targets reported in literature. The experimental parameters considered were the target geometry, beam profile, and angle of the target relative to the beam during irradiation. The Monte-Carlo code FLUKA was used to calculate production yields. The resulting values obtained by FLUKA from pencil beam or spread energy beam were compared to the theoretical yields obtained from the excitation function and the experimental ones. The FLUKA prediction for 89Z-yield reached ≈50 MBq/μA · h which agrees to a high extent with experimental and theoretical yields reported for the different targets.
Collapse
Affiliation(s)
- Shaban Abd-Allah Kandil
- Institute of Physical Chemistry and Radiochemistry , Hochschule Mannheim , Mannheim, Germany
- Cyclotron Facility, Nuclear Research Centre , Atomic Energy Authority, B.O. 13759 , Cairo , Egypt
| | - Ulrich W. Scherer
- Institute of Physical Chemistry and Radiochemistry , Hochschule Mannheim , Mannheim, Germany
| |
Collapse
|
14
|
Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production, and future perspectives. J Labelled Comp Radiopharm 2019; 62:615-634. [PMID: 31137083 DOI: 10.1002/jlcr.3770] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of this review is to make the reader familiar with currently available radiometals, their production modes, capacities, and quality concerns related to their medical use, as well as new emerging radiometals and irradiation technologies from the perspective of their diagnostic and theranostic applications. Production methods of 177 Lu serve as an example of various issues related to the production yield, specific activity, radionuclidic and chemical purity, and production economy. Other radiometals that are currently used or explored for potential medical applications, with particular focus on their theranostic value, are discussed. Using radiometals for diagnostic imaging and therapy is on the rise. The high demand for radiometals for medical use prompts investigations towards using alternative irradiation reactions, while using existing nuclear reactors and accelerator facilities. This review discusses these production capacities and what is necessary to cover the growing demand for theranostic nuclides.
Collapse
Affiliation(s)
- Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Benedetto R, Massicano AVF, Crenshaw BK, Oliveira R, Reis RM, Araújo EB, Lapi SE. 89Zr-DFO-Cetuximab as a Molecular Imaging Agent to Identify Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:288-296. [PMID: 30865493 DOI: 10.1089/cbr.2018.2616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the improvement in clinical outcomes for head and neck squamous cell carcinoma (HNSCC) as the result of cetuximab, patients may present with or develop resistance that increases tumor recurrence rates and limits clinical efficacy. Therefore, identifying those patients who are or become resistant is essential to tailor the best therapeutic approach. Materials and Methods: Cetuximab was conjugated to p-NCS-Bz-DFO and labeled with 89Zr. The resistance model was developed by treating FaDu cells with cetuximab. Western blotting (WB) and specific binding assays were performed to evaluate epidermal growth factor receptor (EGFR) expression and 89Zr-DFO-cetuximab uptake in FaDu cetuximab-resistant (FCR) and FaDu cetuximab-sensitive (FCS) cells. Positron emission tomography imaging and biodistribution were conducted in NU/NU nude mice implanted with FCR or FCS cells. Results: Cetuximab was successfully radiolabeled with 89Zr (≥95%). Binding assays performed in FCR and FCS cells showed significantly lower 89Zr-DFO-cetuximab uptake in FCR (p < 0.0001). WB suggests that the resistance mechanism is associated with EGFR downregulation (p = 0.038). This result is in agreement with the low uptake of 89Zr-DFO-cetuximab in FCR cells. Tumor uptake of 89Zr-DFO-cetuximab in FCR was significantly lower than FCS tumors (p = 0.0340). Conclusions: In this work, the authors showed that 89Zr-DFO-cetuximab is suitable for identification of EGFR downregulation in vitro and in vivo. This radiopharmaceutical may be useful for monitoring resistance in HNSCC patients during cetuximab therapy.
Collapse
Affiliation(s)
- Raquel Benedetto
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Adriana V F Massicano
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Bryant K Crenshaw
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Renato Oliveira
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Rui M Reis
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Elaine B Araújo
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Suzanne E Lapi
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| |
Collapse
|
16
|
Comparative Study with 89Y-foil and 89Y-pressed Targets for the Production of 89Zr †. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zirconium-89 (89Zr, t1/2 = 3.27 days) owns great potential in nuclear medicine, being extensively used in the labelling of antibodies and nanoparticules. 89Zr can be produced by cyclotron via an 89Y(p,n)89Zr reaction while using an 89Y-foil target. In this study, we investigated for the first time the use of 89Y-pressed target for the preparation of 89Zr-oxalate via a (p,n) reaction. We performed comparative studies with an 89Y-foil target mounted on custom-made target supports. A new automated cassette-based purification module was used to facilitate the purification and the fractionation of 89Zr-oxalate. The effective molar activity (EMA) was calculated for both approaches via titration with deferoxamine (DFO). The radionuclidic purity was determined by gamma-ray spectroscopy and the metal impurities were quantified by ICP-MS on the resulting 89Zr-oxalate solution. The cassette-based purification process leading to fractionation is simple, efficient, and provides very high EMA of 89Zr-oxalate. The total recovered activity was 81 ± 4% for both approaches. The highest EMA was found at 13.3 MeV and 25 μA for 0.25-mm thick 89Y-foil. Similar and optimal production yields were obtained at 15 MeV and 40 μA while using 0.50-mm thick 89Y-foil and pressed targets. Metallic impurities concentration was below the general limit of 10 ppm for heavy metals in the US and Ph.Eur for both 89Y-foil and pressed targets. Overall, these results show that the irradiation of 89Y-pressed targets is a very effective process, offering an alternative method for 89Zr production.
Collapse
|
17
|
O'Hara MJ, Murray NJ, Carter JC, Kellogg CM, Link JM. Tandem column isolation of zirconium-89 from cyclotron bombarded yttrium targets using an automated fluidic platform: Anion exchange to hydroxamate resin columns. J Chromatogr A 2018; 1567:37-46. [PMID: 30054129 DOI: 10.1016/j.chroma.2018.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022]
Abstract
The development of a tandem column purification method for the preparation of high-purity 89Zr(IV) oxalate is presented. The primary column was a macroporous strongly basic anion exchange resin on styrene divinylbenzene co-polymer. The secondary column, with an internal volume of 33 μL, was packed with hydroxamate resin. A condition of inverted selectivity was developed, whereby the 89Zr eluent solution for the primary column is equivalent to the 89Zr load solution for the secondary column. The ability to transfer 89Zr from one column to the next allows two sequential column clean-up methods to be performed prior to the final elution of the 89Zr(IV) oxalate. This approach assures delivery of high purity 89Zr product and assures a 89Zr product that is eluted in a substantially smaller volume than is possible when using the traditionally-employed single hydroxamate resin column method. The tandem column purification process has been implemented into a prototype automated fluidic system. The system is configured with on-line gamma detection so column effluents can be monitored in near-real time. The automated method was tested using seven cyclotron bombarded Y foil targets. It was found that 95.1 ± 1.3% of the 89Zr present in the foils was recovered in the secondary column elution fraction. Furthermore, elution peak analysis of several 89Zr elution profile radiochromatograms made possible the determination of 89Zr recovery as a function of volume; a 89Zr product volume that contains 90% of the mean secondary column elution peak can be obtained in 0.29 ± 0.06 mL (representing 86 ± 5% of the 89Zr activity in the target). This product volume represents a significant improvement in radionuclide product concentration over the predominant method used in the field. In addition to the reduced 89Zr product elution volume, titrations of the 89Zr product with deferoxamine mesylate salt across two preparatory methods resulted in mean effective specific activity (ESA) values of 279 and 340 T Bq·mmole-1 and mean bindable metals concentrations ([MB]) of 13.5 and 16.7 nmole·g-1. These ESA and [MB] values infer that the 89Zr(IV) oxalate product resulting from this tandem column isolation method has the highest purity reported to date.
Collapse
Affiliation(s)
- Matthew J O'Hara
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States.
| | - Nathaniel J Murray
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States
| | - Jennifer C Carter
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States
| | - Cynthia M Kellogg
- Nuclear Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, United States
| | - Jeanne M Link
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, United States
| |
Collapse
|
18
|
Graves SA, Kutyreff C, Barrett KE, Hernandez R, Ellison PA, Happel S, Aluicio-Sarduy E, Barnhart TE, Nickles RJ, Engle JW. Evaluation of a chloride-based 89Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin. Nucl Med Biol 2018; 64-65:1-7. [PMID: 30015090 DOI: 10.1016/j.nucmedbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The remarkable stability of the 89Zr-DOTA complex has been shown in recent literature. The formation of this complex appears to require 89Zr-chloride as the complexation precursor rather than the more conventional 89Zr-oxalate. In this work we present a method for the direct isolation of 89Zr-chloride from irradiated natY foils. METHODS 89Zr, 88Zr, and 88Y were prepared by 16 MeV proton irradiation of natY foils and used for batch-extraction based equilibrium coefficient measurements for TBP and UTEVA resin. Radionuclidically pure 89Zr was prepared by 14 MeV proton-irradiation of natY foils. These foils were dissolved in concentrated HCl, trapped on columns of TBP or UTEVA resin, and 89Zr-chloride was eluted in <1 mL of 0.1 M HCl. For purposes of comparison, conventionally-isolated 89Zr-oxalate was converted to 89Zr-chloride by trapping, rinsing, and elution from a QMA cartridge into 1 M HCl. Trace metal analysis was performed on the resulting 89Zr products. RESULTS Equilibrium coefficients for Y and Zr were similar between UTEVA and TBP resins across all HCl concentrations. Kd values of <10-1 mL/g were observed for Y across all HCl concentrations. Kd values of >103 mL/g were observed at HCl concentrations >9 M for Zr, falling to Kd values of <100 mL/g at low HCl concentrations. 89Zr-chloride was recovered from small columns of TBP in <1 mL of 0.1 M HCl with an overall recovery efficiency of 89 ± 3% (n = 3). An average Y/Zr separation factor of 1.5 × 105 (n = 3) was obtained. Trace metal impurities, notably Fe, were higher in TBP-isolated 89Zr-chloride compared with 89Zr-chloride prepared using the conventional two-step procedure. CONCLUSION TBP-functionalized resin appears promising for the direct isolation of 89Zr-chloride from irradiated natY targets. Excellent 89Zr recovery efficiencies were obtained, and chemical purity was sufficient for proof-of-concept chelation studies.
Collapse
Affiliation(s)
- Stephen A Graves
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - Christopher Kutyreff
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Kendall E Barrett
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Steffen Happel
- TrisKem International, 3 rue des champs Geons, 35170 Bruz, France
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
19
|
Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
O’Hara MJ, Murray NJ, Carter JC, Kellogg CM, Link JM. Hydroxamate column-based purification of zirconium-89 (89Zr) using an automated fluidic platform. Appl Radiat Isot 2018; 132:85-94. [DOI: 10.1016/j.apradiso.2017.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/15/2022]
|
22
|
Massicano AVF, Marquez-Nostra BV, Lapi SE. Targeting HER2 in Nuclear Medicine for Imaging and Therapy. Mol Imaging 2018; 17:1536012117745386. [PMID: 29357745 PMCID: PMC5784567 DOI: 10.1177/1536012117745386] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022] Open
Abstract
Since its discovery, the human epidermal growth factor 2 (HER2) has been extensively studied. Presently, there are 2 standard diagnostic techniques to assess HER2 status in biopsies: immunohistochemistry and fluorescence in situ hybridization. While these techniques have played an important role in the treatment of patients with HER2-positive cancer, they both require invasive biopsies for analysis. Moreover, the expression of HER2 is heterogeneous in breast cancer and can change over the course of the disease. Thus, the degree of HER2 expression in the small sample size of biopsied tumors at the time of analysis may not represent the overall status of HER2 expression in the whole tumor and in between tumor foci in the metastatic setting as the disease progresses. Unlike biopsy, molecular imaging using probes against HER2 allows for a noninvasive, whole-body assessment of HER2 status in real time. This technique could potentially select patients who may benefit from HER2-directed therapy and offer alternative treatments to those who may not benefit. Several antibodies and small molecules against HER2 have been labeled with different radioisotopes for nuclear imaging and/or therapy. This review presents the most recent advances in HER2 targeting in nuclear medicine focusing on preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
McInnes LE, Rudd SE, Donnelly PS. Copper, gallium and zirconium positron emission tomography imaging agents: The importance of metal ion speciation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications. Oncotarget 2017; 7:13082-92. [PMID: 26909615 PMCID: PMC4914343 DOI: 10.18632/oncotarget.7552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. RESULTS Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. EXPERIMENTAL DESIGN Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. CONCLUSION 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy.
Collapse
|
25
|
Sharifian M, Sadeghi M, Alirezapour B, Yarmohammadi M, Ardaneh K. Modeling and experimental data of zirconium-89 production yield. Appl Radiat Isot 2017; 130:206-210. [PMID: 28992565 DOI: 10.1016/j.apradiso.2017.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
The radionuclide zirconium-89 can be employed for the positron emission tomography (PET). In this study 89Zr excitation function via 89Y(p,n)89Zr reaction was calculated by the TALYS-1.8 code based on microscopic level density model. The formation of 89Zr was simulated using the Monte Carlo simulation code MCNPX to calculate the integral yield in the 89Y target body for threshold up to 40MeV incident-proton energy. The target thickness was based on calculation of the stopping power using the SRIM-2013 code matched to any incident-proton energy. The production yield of the 89Zr simulated with the Monte Carlo method for the 89Y(p,n)89Zr, 89Y(d,2n)89Zr, natSr(α,xn)89Zr and natZr(p,pxn)89Zr reactions and the results were in good agreement with published experimental results for the optimum energy range. An experimental yield of 53.1MB/µA for the 15MeV proton-induced on Y2O3 powder as a disk-target obtained for 1h irradiation at the AMIRS cyclotron.
Collapse
Affiliation(s)
- Mozhgan Sharifian
- Department of Physics, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Mahdi Sadeghi
- Medical physics department, School of Medicine, Iran University of Medical Science, P.O. Box: 14155-6183, Tehran, Iran.
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran
| | - Mohammad Yarmohammadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran
| | - Khosro Ardaneh
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran
| |
Collapse
|
26
|
Jalilian AR, Osso JA. Production, applications and status of zirconium-89 immunoPET agents. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5358-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Queern SL, Aweda TA, Massicano AVF, Clanton NA, El Sayed R, Sader JA, Zyuzin A, Lapi SE. Production of Zr-89 using sputtered yttrium coin targets. Nucl Med Biol 2017; 50:11-16. [DOI: 10.1016/j.nucmedbio.2017.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
28
|
Sharifian M, Sadeghi M, Alirezapour B. Utilization of GEANT to calculation of production yield for 89Zr by charge particles interaction on 89Y, natZr and natSr. Appl Radiat Isot 2017. [PMID: 28622598 DOI: 10.1016/j.apradiso.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 89Zr, is one of the radionuclide with near-ideal properties for PET due to its suitable half-life and decay properties. The cross-section of 89Zr via 89Y(p,n)89Zr, 89Y(d,2n)89Zr, natSr(α,xn)89Zr and natZr(p,pxn)89Zr, were calculated by the TALYS-1.8 code to predict the optimum range of charge particle energy. The Monte Carlo code GEANT4 was used to simulate the formation of 89Zr in the target body. The simulated 89Zr yield was in good agreement with published experimental results in the optimum energy range. According to the calculations, the 89Y(p,n)89Zr was superior to the other reactions useful to medical application.
Collapse
Affiliation(s)
- Mozhgan Sharifian
- Department of Physics, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-6183, Tehran, Iran.
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran
| |
Collapse
|
29
|
Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez-Nostra BV, Burkemper J, Wright BD, Frye J, Frye S, Siegel BA, Dehdashti F. [ 89Zr]Trastuzumab: Evaluation of Radiation Dosimetry, Safety, and Optimal Imaging Parameters in Women with HER2-Positive Breast Cancer. Mol Imaging Biol 2016; 18:952-959. [PMID: 27146421 PMCID: PMC5096950 DOI: 10.1007/s11307-016-0951-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of the present study is to evaluate safety, human radiation dosimetry, and optimal imaging time of [89Zr]trastuzumab in patients with HER2-positive breast cancer. PROCEDURES Twelve women with HER2-positive breast cancer underwent [89Zr]trastuzumab positron emission tomography (PET)/X-ray computed tomography (CT) twice within 7 days post-injection. Biodistribution data from whole-torso PET/CT images and organ time-activity curves were created using data from all patients. Human dosimetry was calculated using OLINDA with the adult female model. RESULTS High-quality images and the greatest tumor-to-nontumor contrast were achieved with images performed 5 ± 1 day post-injection. Increased [89Zr]trastuzumab uptake was seen in at least one known lesion in ten patients. The liver was the dose-limiting organ (retention of ∼12 % of the injected dose and average dose of 1.54 mSv/MBq). The effective dose was 0.47 mSv/MBq. No adverse effects of [89Zr]trastuzumab were encountered. CONCLUSION [89Zr]trastuzumab was safe and optimally imaged at least 4 days post-injection. The liver was the dose-limiting organ.
Collapse
Affiliation(s)
- Richard Laforest
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Suzanne E Lapi
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- The Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Reiko Oyama
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ron Bose
- The Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adel Tabchy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernadette V Marquez-Nostra
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Burkemper
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian D Wright
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Frye
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Frye
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry A Siegel
- The Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Farrokh Dehdashti
- The Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
30
|
Ellison PA, Valdovinos HF, Graves SA, Barnhart TE, Nickles RJ. Spot-welding solid targets for high current cyclotron irradiation. Appl Radiat Isot 2016; 118:350-353. [PMID: 27771445 DOI: 10.1016/j.apradiso.2016.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022]
Abstract
Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50µA proton beam degraded to 14MeV. The resulting activity yield of 48±4 MBq/(μA∙hr) now extends the outreach of 89Zr for a broader distribution.
Collapse
Affiliation(s)
- Paul A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, United States
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, United States
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, United States.
| |
Collapse
|
31
|
Wright BD, Whittenberg J, Desai A, DiFelice C, Kenis PJA, Lapi SE, Reichert DE. Microfluidic Preparation of a 89Zr-Labeled Trastuzumab Single-Patient Dose. J Nucl Med 2016; 57:747-52. [PMID: 26769862 DOI: 10.2967/jnumed.115.166140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (89)Zr-labeled antibodies are being investigated in several clinical trials; however, the time requirement for synthesis of clinical doses can hinder patient throughput because of scheduling difficulties. Additionally, low specific activity due to poor labeling efficiency can require larger amounts of the radiopharmaceutical to be administered, possibly leading to adverse side effects. Here, we describe the design and evaluation of a microfluidic reactor capable of synthesizing a single clinical dose of (89)Zr-labeled antibody. (89)Zr-labeled trastuzumab was chosen for this validation because it is currently being evaluated in clinical trials for imaging human epidermal growth factor receptor 2-positive cancer patients. METHODS A microreactor fabricated from polydimethylsiloxane/glass was silanated with trimethoxy(octadecyl) silane to reduce antibody adsorption. Desferrioxamine-p-benzyl-isothiocyanate (DFO-Bz-NCS) was conjugated to trastuzumab in an 8:1 molar ratio following the literature procedures using aseptic techniques. Radiolabeling was performed by pumping (89)Zr-oxalate and DFO-Bz-trastuzumab into the microfluidic reactor at a total rate of 20 μL/min in ratios varying from 1:37 to 1:592 mg:MBq at 37°C to achieve optimal labeling. RESULTS Silanated reactors showed low antibody adsorption in comparison to unmodified reactors (95% monoclonal antibody recovered vs. 0% recovered). Labeling of the modified trastuzumab was shown to be achievable at a specific activity above the reported literature value of 220 MBq/mg. A high radiochemical purity was achieved without an incubation period at specific activities of less than 148 MBq/mg; however, specific activities up to 592 MBq/mg could be achieved with an incubation period. Clinical doses were able to be prepared and passed all quality control guidelines set by the Food and Drug Administration. Samples were sterile, colorless, and radiochemically pure (100%); maintained the ability to bind to the intended receptor; formed a minimal amount of aggregates (1%-4%); and were completed within 45-60 min. CONCLUSION (89)Zr-labeled trastuzumab for use in a clinical setting was synthesized in a microfluidic reactor in under an hour while reducing the amount of handling required by a technician. Use of this compact platform not only could enable the use of radiolabeled antibodies to become a common practice, but also could spread the use of radiolabeled antibodies beyond locations with cyclotron facilities.
Collapse
Affiliation(s)
- Brian D Wright
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - Joseph Whittenberg
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amit Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Christina DiFelice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - Paul J A Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Suzanne E Lapi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - David E Reichert
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| |
Collapse
|
32
|
Semi-automated production of 89 Zr-oxalate/ 89 Zr-chloride and the potential of 89 Zr-chloride in radiopharmaceutical compounding. Appl Radiat Isot 2016; 107:317-322. [DOI: 10.1016/j.apradiso.2015.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/07/2015] [Indexed: 11/20/2022]
|
33
|
Marquez BV, Ikotun OF, Zheleznyak A, Wright B, Hari-Raj A, Pierce RA, Lapi SE. Evaluation of (89)Zr-pertuzumab in Breast cancer xenografts. Mol Pharm 2014; 11:3988-95. [PMID: 25058168 PMCID: PMC4224522 DOI: 10.1021/mp500323d] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Pertuzumab is a monoclonal antibody that binds to HER2 and is used
in combination with another HER2–specific monoclonal antibody,
trastuzumab, for the treatment of HER2+ metastatic breast cancer.
Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab,
and its affinity is enhanced when trastuzumab is present. We aim to
exploit this enhanced affinity of pertuzumab for its HER2 binding
epitope and adapt this antibody as a PET imaging agent by radiolabeling
with 89Zr to increase the sensitivity of HER2 detection
in vivo. Here, we investigate the biodistribution of 89Zr-pertuzumab in HER2–expressing BT-474 and HER2–nonexpressing
MDA-MB-231 xenografts to quantitatively assess HER2 expression in
vivo. In vitro cell binding studies were performed resulting in retained
immunoreactivity and specificity for HER2–expressing cells.
In vivo evaluation of 89Zr-pertuzumab was conducted in
severely combined immunodeficient mice, subcutaneously inoculated
with BT-474 and MDA-MB-231 cells. 89Zr-pertuzumab was systemically
administered and imaged at 7 days postinjection (p.i.) followed by
terminal biodistribution studies. Higher tumor uptake was observed
in BT-474 compared to MDA-MB-231 xenografts with 47.5 ± 32.9
and 9.5 ± 1.7% ID/g, respectively at 7 days p.i (P = 0.0009) and blocking studies with excess unlabeled pertuzumab
showed a 5-fold decrease in BT-474 tumor uptake (P = 0.0006), confirming the in vivo specificity of this radiotracer.
Importantly, we observed that the tumor accumulation of 89Zr-pertuzumab was increased in the presence of unlabeled trastuzumab,
at 173 ± 74.5% ID/g (P = 0.01). Biodistribution
studies correlate with PET imaging quantification using max SUV (r = 0.98, P = 0.01). Collectively, these
results illustrate that 89Zr-pertuzumab as a PET imaging
agent may be beneficial for the quantitative and noninvasive assessment
of HER2 expression in vivo especially for patients undergoing trastuzumab
therapy.
Collapse
Affiliation(s)
- Bernadette V Marquez
- Mallinckrodt Institute of Radiology, Washington University School of Medicine , Campus Box 8225, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | |
Collapse
|
34
|
Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203601. [PMID: 24991539 PMCID: PMC4058511 DOI: 10.1155/2014/203601] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 01/15/2023]
Abstract
Antibody based positron emission tomography (immuno-PET) imaging is of increasing importance to visualize and characterize tumor lesions. Additionally, it can be used to identify patients who may benefit from a particular therapy and monitor the therapy outcome. In recent years the field is focused on 89Zr, a radiometal with near ideal physical and chemical properties for immuno-PET. In this review we will discuss the production of 89Zr, the bioconjugation strategies, and applications in (pre-)clinical studies of 89Zr-based immuno-PET in oncology. To date, 89Zr-based PET imaging has been investigated in a wide variety of cancer-related targets. Moreover, clinical studies have shown the feasibility for 89Zr-based immuno-PET to predict and monitor treatment, which could be used to tailor treatment for the individual patient. Further research should be directed towards the development of standardized and robust conjugation methods and improved chelators to minimize the amount of released Zr4+ from the antibodies. Additionally, further validation of the imaging method is required. The ongoing development of new 89Zr-labeled antibodies directed against novel tumor targets is expected to expand applications of 89Zr-labeled immuno-PET to a valuable method in the medical imaging.
Collapse
|
35
|
Price EW, Zeglis BM, Lewis JS, Adam MJ, Orvig C. H6phospa-trastuzumab: bifunctional methylenephosphonate-based chelator with 89Zr, 111In and 177Lu. Dalton Trans 2014; 43:119-31. [PMID: 24104523 PMCID: PMC3872121 DOI: 10.1039/c3dt51940f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The acyclic chelator H6phospa and the bifunctional derivative p-SCN-Bn-H6phospa have been synthesized using nosyl protection chemistry and evaluated with (89)Zr, (111)In, and (177)Lu. The p-SCN-Bn-H6phospa derivative was successfully conjugated to trastuzumab with isotopic dilution assays indicating 3.3 ± 0.1 chelates per antibody and in vitro cellular binding assays indicating an immunoreactivity value of 97.9 ± 2.6%. Radiolabeling of the H6phospa-trastuzumab immunoconjugate was achieved with (111)In in 70-90% yields at room temperature in 30 minutes, while (177)Lu under the same conditions produced more inconsistent yields of 40-80%. Stability experiments in human serum revealed the (111)In-phospa-trastuzumab complex to be 52.0 ± 5.3% intact after 5 days at 37 °C, while the (177)Lu-phospa-trastuzumab to be only 2.0 ± 0.3% intact. Small animal SPECT/CT imaging using mice bearing subcutaneous SKOV-3 ovarian cancer xenografts was performed, and it was found that (111)In-phospa-trastuzumab successfully identified and delineated small (~2 mm in diameter) tumors from surrounding tissues, despite visible uptake in the kidneys and bone due to moderate chelate instability. As predicted from stability assays in serum, the (177)Lu-phospa-trastuzumab conjugate served as a negative control and displayed no tumor uptake, with high uptake in bones indicating rapid and complete radiometal dissociation and suggesting a potential application of H6phospa in transient lanthanide chelation for bone-delivery. Radiolabeling with (89)Zr was attempted, but even with elevated temperatures of 37 °C, the maximum observed radiometal incorporation over 18 hours was 12%. It can be concluded from this work that H6phospa is not superior to the previously studied H4octapa for use with (111)In and (177)Lu, but improvements in (89)Zr radiolabeling were observed over H4octapa, suggesting H6phospa to be an excellent starting point for elaboration of (89)Zr-based radiopharmaceutical development. To our knowledge, H6phospa is the best desferrioxamine alternative for (89)Zr radiolabeling to be studied to date.
Collapse
Affiliation(s)
- Eric W. Price
- Medicinal Inorganic Chemistry Group, Department of
Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British
Columbia, Canada, V6T 1Z1. Telephone: (604) 822-4449. Fax: (604) 822-2847
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia,
Canada, V6T 2A3. Telephone: (604) 222-7527. Fax: (604) 222-1074
| | - Brian M. Zeglis
- Memorial Sloan-Kettering Cancer Center (MSKCC), Memorial
Hospital, 1275 York Avenue, New York, New York, 10065, United States. Telephone:
(646) 888-3038
| | - Jason S. Lewis
- Memorial Sloan-Kettering Cancer Center (MSKCC), Memorial
Hospital, 1275 York Avenue, New York, New York, 10065, United States. Telephone:
(646) 888-3038
| | - Michael J. Adam
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia,
Canada, V6T 2A3. Telephone: (604) 222-7527. Fax: (604) 222-1074
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of
Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British
Columbia, Canada, V6T 1Z1. Telephone: (604) 822-4449. Fax: (604) 822-2847
| |
Collapse
|