1
|
Qi P, Qian W, Guo L, Xue J, Zhang N, Wang Y, Zhang Z, Zhang Z, Lin L, Sun C, Zhu L, Liu W. Sensing with Femtosecond Laser Filamentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:7076. [PMID: 36146424 PMCID: PMC9504994 DOI: 10.3390/s22187076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/25/2023]
Abstract
Femtosecond laser filamentation is a unique nonlinear optical phenomenon when high-power ultrafast laser propagation in all transparent optical media. During filamentation in the atmosphere, the ultrastrong field of 1013-1014 W/cm2 with a large distance ranging from meter to kilometers can effectively ionize, break, and excite the molecules and fragments, resulting in characteristic fingerprint emissions, which provide a great opportunity for investigating strong-field molecules interaction in complicated environments, especially remote sensing. Additionally, the ultrastrong intensity inside the filament can damage almost all the detectors and ignite various intricate higher order nonlinear optical effects. These extreme physical conditions and complicated phenomena make the sensing and controlling of filamentation challenging. This paper mainly focuses on recent research advances in sensing with femtosecond laser filamentation, including fundamental physics, sensing and manipulating methods, typical filament-based sensing techniques and application scenarios, opportunities, and challenges toward the filament-based remote sensing under different complicated conditions.
Collapse
Affiliation(s)
- Pengfei Qi
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Wenqi Qian
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Lanjun Guo
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jiayun Xue
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Nan Zhang
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Yuezheng Wang
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Zhi Zhang
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Zeliang Zhang
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
| | - Lie Lin
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Changlin Sun
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Liguo Zhu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Weiwei Liu
- Institute of Modern Optics, Eye Institute, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
2
|
Crego A, Jarque EC, San Roman J. Ultrashort visible energetic pulses generated by nonlinear propagation of necklace beams in capillaries. OPTICS EXPRESS 2021; 29:929-937. [PMID: 33726318 DOI: 10.1364/oe.411338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The generation of ultrashort visible energetic pulses is investigated numerically by the nonlinear propagation of infrared necklace beams in capillaries. We have developed a (3+1)D model that solves the nonlinear propagation equation, including the complete spatio-temporal dynamics and the azimuthal dependence of these structured beams. Due to their singular nonlinear propagation, the spectrum broadening inside the capillary extends to the visible region in a controlled way, despite the high nonlinearity, avoiding self-focusing. The results indicate that the features of these necklace beams enable the formation of visible pulses with pulse duration below 10 fs and energies of 50 μJ by soliton self-compression dynamics for different gas pressures inside the capillary.
Collapse
|
3
|
Zeng T, He J, Kobayashi T, Liu W. Mechanism study of 2-D laser array generation in a YAG crystal plate. OPTICS EXPRESS 2015; 23:19092-19097. [PMID: 26367572 DOI: 10.1364/oe.23.019092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have reproduced the process of two-dimensional array generation by using two crossing laser beams in a YAG crystal plate based on numerical simulation considering cross-phase modulation (XPM) and self-focusing. Furthermore, we come to the conclusion that both XPM and the cylindrical symmetry breaking in the initial beam profile contributes to the generation of two-dimensional array. In addition, we have studied the threshold input laser beam power for the two crossing beams splitting in a YAG crystal plate. Our study could be valuable in various applications, such as 2-D all-optical switching devices or multicolor pump-probe experiments.
Collapse
|